1
|
Basak R, Kozlowski R, Pugnaloni LA, Kramar M, Socolar JES, Carlevaro CM, Kondic L. Evolution of force networks during stick-slip motion of an intruder in a granular material: Topological measures extracted from experimental data. Phys Rev E 2023; 108:054903. [PMID: 38115403 DOI: 10.1103/physreve.108.054903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023]
Abstract
In quasi-two-dimensional experiments with photoelastic particles confined to an annular region, an intruder constrained to move in a circular path halfway between the annular walls experiences stick-slip dynamics. We discuss the response of the granular medium to the driven intruder, focusing on the evolution of the force network during sticking periods. Because the available experimental data do not include precise information about individual contact forces, we use an approach developed in our previous work [Basak et al., J. Eng. Mech. 147, 04021100 (2021)0733-939910.1061/(ASCE)EM.1943-7889.0002003] based on networks constructed from measurements of the integrated strain magnitude on each particle. These networks are analyzed using topological measures based on persistence diagrams, revealing that force networks evolve smoothly but in a nontrivial manner throughout each sticking period, even though the intruder and granular particles are stationary. Characteristic features of persistence diagrams show identifiable slip precursors. In particular, the number of generators describing the structure and complexity of force networks increases consistently before slips. Key features of the dynamics are similar for granular materials composed of disks or pentagons, but some details are consistently different. In particular, we find significantly larger fluctuations of the measures computed based on persistence diagrams and, therefore, of the underlying networks, for systems of pentagonal particles.
Collapse
Affiliation(s)
- Rituparna Basak
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Ryan Kozlowski
- Department of Physics, College of the Holly Cross, Worcester, Massachusetts 01610, USA
| | - Luis A Pugnaloni
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, CONICET, Uruguay 151, 6300 Santa Rosa (La Pampa), Argentina
| | - M Kramar
- Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Joshua E S Socolar
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - C Manuel Carlevaro
- Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, 59 789, 1900 La Plata, Argentina and and Departamento de Ingeniería Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, Av. 60 Esquina 124, La Plata 1900, Argentina
| | - Lou Kondic
- Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| |
Collapse
|
2
|
Oger L, Delannay R, Le Gonidec Y. In-depth influence of the top surface fabrication of a bead packing. Phys Rev E 2023; 107:054906. [PMID: 37329011 DOI: 10.1103/physreve.107.054906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Packings of beads confined in slowly tilted containers with a top free surface are commonly used in laboratory experiments to model natural grain avalanches and better understand and predict critical events from optical measurements of the surface activity. To that aim, after reproducible packing preparations, the present paper focuses on the effects of the surface fabrication, which can be scraped or soft leveled, on both the avalanche stability angle and the dynamic of precursory events for glass beads of 2-mm diameter. A depth effect of a scraping operation is highlighted by considering different packing heights and inclination speeds.
Collapse
Affiliation(s)
- Luc Oger
- Univ. Rennes, CNRS, IPR [(Institut de Physique de Rennes)]-UMR 6251, F-35000 Rennes, France
| | - Renaud Delannay
- Univ. Rennes, CNRS, IPR [(Institut de Physique de Rennes)]-UMR 6251, F-35000 Rennes, France
| | - Yves Le Gonidec
- Univ. Rennes, CNRS, Géosciences Rennes-UMR 6118, F-35000 Rennes, France
| |
Collapse
|
3
|
Bretz P, Kondic L, Kramar M. Stochastic methods for slip prediction in a sheared granular system. Phys Rev E 2023; 107:054901. [PMID: 37329081 DOI: 10.1103/physreve.107.054901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/01/2023] [Indexed: 06/18/2023]
Abstract
We consider a sheared granular system experiencing intermittent dynamics of stick-slip type via discrete element simulations. The considered setup consists of a two-dimensional system of soft frictional particles sandwiched between solid walls, one of which is exposed to a shearing force. The slip events are detected using stochastic state space models applied to various measures describing the system. The amplitudes of the events spread over more than four decades and present two distinctive peaks, one for the microslips and the other for the slips. We show that the measures describing the forces between the particles provide earlier detection of an upcoming slip event than the measures based solely on the wall movement. By comparing the detection times obtained from the considered measures, we observe that a typical slip event starts with a local change in the force network. However, some local changes do not spread globally over the force network. For the changes that become global, we find that their size strongly influences the further behavior of the system. If the size of a global change is large enough, then it triggers a slip event; if it is not, then a much weaker microslip follows. Quantification of the changes in the force network is made possible by formulating clear and precise measures describing their static and dynamic properties.
Collapse
Affiliation(s)
- P Bretz
- Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - L Kondic
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - M Kramar
- Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
4
|
Yuu S, Umekage T. Onset mechanism of granular avalanches in inclining layers using a continuum model. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Kramár M, Cheng C, Basak R, Kondic L. On intermittency in sheared granular systems. SOFT MATTER 2022; 18:3583-3593. [PMID: 35475456 DOI: 10.1039/d1sm01780b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We consider a system of granular particles, modeled by two dimensional frictional soft elastic disks, that is exposed to externally applied time-dependent shear stress in a planar Couette geometry. We concentrate on the external forcing that produces intermittent dynamics of stick-slip type. In this regime, the top wall remains almost at rest until the applied stress becomes sufficiently large, and then it slips. We focus on the evolution of the system as it approaches a slip event. Our main finding is that there are two distinct groups of measures describing system behavior before a slip event. The first group consists of global measures defined as system-wide averages at a fixed time. Typical examples of measures in this group are averages of the normal or tangent forces acting between the particles, system size and number of contacts between the particles. These measures do not seem to be sensitive to an approaching slip event. On average, they tend to increase linearly with the force pulling the spring. The second group consists of the time-dependent measures that quantify the evolution of the system on a micro (particle) or mesoscale. Measures in this group first quantify the temporal differences between two states and only then aggregate them to a single number. For example, Wasserstein distance quantitatively measures the changes of the force network as it evolves in time while the number of broken contacts quantifies the evolution of the contact network. The behavior of the measures in the second group changes dramatically before a slip event starts. They increase rapidly as a slip event approaches, indicating a significant increase in fluctuations of the system before a slip event is triggered.
Collapse
Affiliation(s)
- Miroslav Kramár
- Department of Mathematics, University of Oklahoma, 601 Elm Avenue, Norman, OK 73019, USA.
| | - Chao Cheng
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | - Rituparna Basak
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | - Lou Kondic
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| |
Collapse
|
6
|
Yuu S, Umekage T. Mechanism of avalanche precursors in inclining granular layers using a continuum model obtained by discrete element method. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Oger L, Delannay R, Le Gonidec Y. Robust experimental study of avalanche precursory events based on reproducible cycles of grain packing destabilizations. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124903023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quasi-periodic collective displacements of grains at the free surface of a tilted grain packing constitute precursors of granular avalanches. Laboratory experiments are commonly performed by slowly tilting the packing from 0° to the maximal stability angle θA. In these conditions, the number of precursors is too small to assess reproducible and robust statistical analyses of the precursor activity. To go beyond this limitation, we have developed a specific experimental protocol consisting of tilting the packing with successive oscillation cycles. We use a high-resolution optical camera and process the images of the packing free surface to identify precursory events during many consecutive cycles of a single packing. We observe the same behavior for all half-cycles, forth and back: appearance of the first precursors after the same variation of inclination, exponential evolution of the weak surface activity for the first precursors and linear growth of stronger surface activity for the following ones. The experimental protocol provides both reproducible precursor measurements based on large sample statistical inferences and a quasi-stationary state after one full-cycle. This approach is very promising for highlighting the effects of external parameters, including humidity and packing geometry.
Collapse
|
8
|
Oger L, Tannoury CE, Delannay R, Le Gonidec Y, Ippolito I, Roht YL, Gómez-Arriaran I. Dynamic behavior of humid granular avalanches: Optical measurements to characterize the precursor activity. Phys Rev E 2020; 101:022902. [PMID: 32168568 DOI: 10.1103/physreve.101.022902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Laboratory study of slope stability of granular media remains a challenge for modeling, understanding, and predicting natural hazards, such as avalanches and landslides, precursory signs of which are controlled by numerous physical parameters. The present work focuses on the impact of the humidity, in the range of 40-90%, on the stability of monodisperse dense packings of spherical beads. The beads are in a transparent box that is slowly and continuously tilted and allows simultaneous top and lateral optical measurements of global displacements of grains at the surface, defined as precursors. Humidity increases the cohesion between the grains. By performing successive avalanches that destabilize deeper granular layers, we assess the role of the exposure time to the high humidity rates in the diffusion process to reach the hygroscopic equilibrium inside the packing. We highlight an increase of the stability and first precursor angles, associated to a constant angle increment between two consecutive precursors, with a dependency with both the diameter (0.2,0.5, and 0.75 mm) and the material (glass and polystyrene) of the grains.
Collapse
Affiliation(s)
- Luc Oger
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Claude El Tannoury
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Renaud Delannay
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - Yves Le Gonidec
- Univ. Rennes, CNRS, Géosciences Rennes-UMR 6118, F-35000 Rennes, France
| | - Irene Ippolito
- Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Medios Porosos, Av. Paseo Colón 850, Buenos Aires, Argentina
| | - Yanina Lucrecia Roht
- Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Medios Porosos, Av. Paseo Colón 850, Buenos Aires, Argentina
| | - Iñaki Gómez-Arriaran
- ENEDI, Department of Thermal Engineering, University of the Basque Country-UPV/EHU, Spain
| |
Collapse
|
9
|
Baldassarri A, Annunziata MA, Gnoli A, Pontuale G, Petri A. Breakdown of Scaling and Friction Weakening in Intermittent Granular Flow. Sci Rep 2019; 9:16962. [PMID: 31740801 PMCID: PMC6861274 DOI: 10.1038/s41598-019-53178-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/11/2019] [Indexed: 12/02/2022] Open
Abstract
Many materials are produced, processed and stored as grains, while granularity of matter can be crucial in triggering potentially catastrophic geological events like landslides, avalanches and earthquakes. The response of grain assemblies to shear stress is therefore of utmost relevance to both human and natural environment. At low shear rate a granular system flows intermittently by distinct avalanches. In such state the avalanche velocity in time is expected to follow a symmetrical and universal average behavior, whose dependence on the slip size reduces to a scale factor. Analyzing data from long lasting experiments, we observe a breakdown of this scaling: While in short slips velocity shows indeed a self-similar and symmetric profile, it does not in long slips. The investigation of frictional response in these different regimes evidences that this breakdown can be traced back to the onset of a friction weakening, which is of dynamical origin and can amplify instabilities exactly in this critical state, the most frequent state for natural hazards.
Collapse
Affiliation(s)
- A Baldassarri
- CNR - Istituto dei Sistemi Complessi, Dipartimento di Fisica, Università di Roma Sapienza, P.le A. Moro 2, I-00185, Roma, Italy
| | - M A Annunziata
- CNR - Istituto dei Sistemi Complessi, Dipartimento di Fisica, Università di Roma Sapienza, P.le A. Moro 2, I-00185, Roma, Italy
| | - A Gnoli
- CNR - Istituto dei Sistemi Complessi, Dipartimento di Fisica, Università di Roma Sapienza, P.le A. Moro 2, I-00185, Roma, Italy
| | - G Pontuale
- CNR - Istituto dei Sistemi Complessi, Dipartimento di Fisica, Università di Roma Sapienza, P.le A. Moro 2, I-00185, Roma, Italy
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Research Centre for Forestry and Woods, Via Santa Margherita 80, I-52100, Arezzo, Italy
| | - A Petri
- CNR - Istituto dei Sistemi Complessi, Dipartimento di Fisica, Università di Roma Sapienza, P.le A. Moro 2, I-00185, Roma, Italy.
| |
Collapse
|
10
|
Amon A, Blanc B, Géminard JC. Avalanche precursors in a frictional model. Phys Rev E 2018; 96:033004. [PMID: 29346911 DOI: 10.1103/physreve.96.033004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 11/07/2022]
Abstract
We present a one-dimensional numerical model based on elastically coupled sliders on a frictional incline of variable tilt. This very simple approach makes it possible to study the precursors to the avalanche and to provide a rationalization of different features that have been observed in experiments. We provide a statistical description of the model leading to master equations describing the state of the system as a function of the angle of inclination. Our central results are the reproduction of large-scale regular events preceding the avalanche, on the one hand, and an analytical approach providing an internal threshold for the outbreak of rearrangements before the avalanche in the system, on the other hand.
Collapse
Affiliation(s)
- Axelle Amon
- Institut de Physique de Rennes, UMR UR1-CNRS 6251, Université de Rennes 1, Campus de Beaulieu, F-35042 RENNES Cedex, France
| | - Baptiste Blanc
- Université de Lyon, Laboratoire de Physique, Ecole Normale Supérieure, CNRS, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France
| | - Jean-Christophe Géminard
- Université de Lyon, Laboratoire de Physique, Ecole Normale Supérieure, CNRS, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France
| |
Collapse
|
11
|
Amon A, Mikhailovskaya A, Crassous J. Spatially resolved measurements of micro-deformations in granular materials using diffusing wave spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:051804. [PMID: 28571455 DOI: 10.1063/1.4983048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This article is a tutorial on the practical implementation of a method of measurement of minute deformations based on multiple scattering. This technique has been recently developed and has proven to give new insights into the spatial repartition of strain in a granular material. We provide here the basics to understand the method by giving a synthetic review on diffusing wave spectroscopy and multiple scattering in granular materials. We detail a simple experiment using standard lab equipment to pedagogically demonstrate the implementation of the method. Finally we give a few examples of measurements that have been obtained in other works to discuss the potential of the method.
Collapse
Affiliation(s)
- Axelle Amon
- Université de Rennes 1, Institut de Physique de Rennes (UMR UR1-CNRS 6251), Bât. 11A, Campus de Beaulieu, F-35042 Rennes, France
| | - Alesya Mikhailovskaya
- Université de Rennes 1, Institut de Physique de Rennes (UMR UR1-CNRS 6251), Bât. 11A, Campus de Beaulieu, F-35042 Rennes, France
| | - Jérôme Crassous
- Université de Rennes 1, Institut de Physique de Rennes (UMR UR1-CNRS 6251), Bât. 11A, Campus de Beaulieu, F-35042 Rennes, France
| |
Collapse
|
12
|
Le Guen L, Piton M, Hénaut Q, Huchet F, Richard P. Heat convection and radiation in flighted rotary kilns: A minimal model. CAN J CHEM ENG 2016. [DOI: 10.1002/cjce.22659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Laurédan Le Guen
- LUNAM Université, GPEM, IFSTTAR, site de Nantes, Route de Bouaye; CS4 44344 Bouguenais Cedex France
| | - Maxime Piton
- LUNAM Université, GPEM, IFSTTAR, site de Nantes, Route de Bouaye; CS4 44344 Bouguenais Cedex France
| | - Quentin Hénaut
- LUNAM Université, GPEM, IFSTTAR, site de Nantes, Route de Bouaye; CS4 44344 Bouguenais Cedex France
| | - Florian Huchet
- LUNAM Université, GPEM, IFSTTAR, site de Nantes, Route de Bouaye; CS4 44344 Bouguenais Cedex France
| | - Patrick Richard
- LUNAM Université, GPEM, IFSTTAR, site de Nantes, Route de Bouaye; CS4 44344 Bouguenais Cedex France
| |
Collapse
|
13
|
Zimber F, Kollmer JE, Pöschel T. Polydirectional stability of granular matter. PHYSICAL REVIEW LETTERS 2013; 111:168003. [PMID: 24182304 DOI: 10.1103/physrevlett.111.168003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Indexed: 06/02/2023]
Abstract
We investigate jammed granular matter in a slowly rotating drum partially filled with granular material and find a state of polydirectional stability. In this state, the material responds elastically to small stresses in a wide angular interval while it responds by plastic deformation when subjected to small stresses outside this interval of directions. We describe the evolution of the granulate by means of a rate equation and find quantitative agreement with the experiment. The state of polydirectional stability complements the fragile state, where the material responds elastically to small applied stresses only in a certain direction but even very small stresses in any other direction would lead to plastic deformations. Similar to fragile matter, polydirectionally stable matter is created in a dynamic process by self-organization.
Collapse
Affiliation(s)
- Fabian Zimber
- Institute for Multiscale Simulation of Particulate Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Naegelsbachstrasse 49b, 91052 Bavaria, Germany
| | | | | |
Collapse
|
14
|
Amon A, Bertoni R, Crassous J. Experimental investigation of plastic deformations before a granular avalanche. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012204. [PMID: 23410323 DOI: 10.1103/physreve.87.012204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Indexed: 06/01/2023]
Abstract
We present an experimental study of the deformation inside a granular material that is progressively tilted. We investigate the deformation before the avalanche with a spatially resolved diffusive wave spectroscopy setup. At the beginning of the inclination process, we first observe localized and isolated events in the bulk, with a density which decreases with the depth. As the angle of inclination increases, series of microfailures occur periodically in the bulk, and finally a granular avalanche takes place. The microfailures are observed only when the tilt angles are larger than a threshold angle much smaller than the granular avalanche angle. We have characterized the density of reorganizations and the localization of microfailures. We have also explored the effect of the nature of the grains, the relative humidity conditions, and the packing fraction of the sample. We discuss those observations in the framework of the plasticity of granular matter. Microfailures may then be viewed as the result of the accumulation of numerous plastic events.
Collapse
Affiliation(s)
- Axelle Amon
- Institut de Physique de Rennes, UMR UR1-CNRS 6251, Université de Rennes 1, Campus de Beaulieu, F-35042 RENNES cedex, France.
| | | | | |
Collapse
|
15
|
Börzsönyi T, Halsey TC, Ecke RE. Avalanche dynamics on a rough inclined plane. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:011306. [PMID: 18763947 DOI: 10.1103/physreve.78.011306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Indexed: 05/26/2023]
Abstract
The avalanche behavior of gravitationally forced granular layers on a rough inclined plane is investigated experimentally for different materials and for a variety of grain shapes ranging from spherical beads to highly anisotropic particles with dendritic shape. We measure the front velocity, area, and height of many avalanches and correlate the motion with the area and height. We also measure the avalanche profiles for several example cases. As the shape irregularity of the grains is increased, there is a dramatic qualitative change in avalanche properties. For rough nonspherical grains, avalanches are faster, bigger, and overturning in the sense that individual particles have down-slope speeds u p that exceed the front speed uf as compared with avalanches of spherical glass beads that are quantitatively slower and smaller and where particles always travel slower than the front speed. There is a linear increase of three quantities: (i) dimensionless avalanche height, (ii) ratio of particle to front speed, and (iii) the growth rate of avalanche speed with increasing avalanche size with increasing tan theta r where theta r is the bulk angle of repose, or with increasing beta P, the slope of the depth averaged flow rule, where both theta r and beta P reflect the grain shape irregularity. These relations provide a tool for predicting important dynamical properties of avalanches as a function of grain shape irregularity. A relatively simple depth-averaged theoretical description captures some important elements of the avalanche motion, notably the existence of two regimes of this motion.
Collapse
Affiliation(s)
- Tamás Börzsönyi
- Condensed Matter & Thermal Physics and Center for Nonlinear Studies, Los Alamos National Lab, New Mexico 87545, USA.
| | | | | |
Collapse
|
16
|
Vidales A, Ippolito I, Benegas O, Aguirre F, Nocera O, Baudino M. Granular components of cement: Influence of mixture composition. POWDER TECHNOL 2006. [DOI: 10.1016/j.powtec.2006.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Aguirre MA, Calvo A, Ippolito I, Medus A, Mancuso M. Rearrangements in a two-dimensional packing of disks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:041307. [PMID: 16711793 DOI: 10.1103/physreve.73.041307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 12/23/2005] [Indexed: 05/09/2023]
Abstract
Several aspects of the dynamics of a granular two-dimensional (2D) packing of disks slowly tilted until the system loses stability and an avalanche takes place are discussed. The evolution of the system, constructed with monodisperse disks placed on a thin cell, is studied by image analysis. As in the 3D case (packing of spheres), the system undergoes several rearrangements of different magnitude before the avalanche takes place. For thick systems, not only are small rearrangements detected but also displacements of large clusters of disks are observed in the bulk and on the free surface of the packing. In particular, characteristic angles and the avalanche mass were determined for samples of different heights. On thick systems, velocity fields of large rearrangements are presented and changes in the internal structure of the packing produced by these rearrangements are analyzed. It is found that the main effects of rearrangements is to increase the disorder of the system. Also, as the disorder of the system increases its stability threshold decreases.
Collapse
Affiliation(s)
- M A Aguirre
- Grupo de Medios Porosos, Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Capital Federal (1063), Argentina.
| | | | | | | | | |
Collapse
|