1
|
Li H, Liu J, Li C, Du L. Vibrational resonance and chaos control in the canonical Chua's circuit with a smooth nonlinear resistor. Sci Rep 2024; 14:31013. [PMID: 39730851 DOI: 10.1038/s41598-024-82250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Vibrational resonance and chaos control in the canonical Chua's circuit with a smooth cubic nonlinear resistor is investigated by an analog circuit experiment and a dynamical model. By adjusting the amplitude and frequency of the high-frequency signal while keeping other parameters constant, the system exhibits a resonant peak in its response to the weak low-frequency signal. Notably, when the amplitude of the high-frequency signal exceeds the critical threshold, the system undergoes a transition from a single-scroll chaotic attractor to a double-scroll chaotic attractor, marking the emergence of vibrational resonance. In particular, the maximum of the system's response amplitude is insusceptible when the frequency of the high-frequency signal varies over a broad range, which indicates the strong robustness of the vibrational resonance in the present system. The experimental results are coincident with the numerical simulations. This research has potential applications in chaos control and weak signal detection.
Collapse
Affiliation(s)
- Hao Li
- Department of Physics, Yunnan University, Kunming, 650500, China
- School of Information Science and Engineering, Yunnan University, Kunming, 650500, China
| | - Jiangling Liu
- Department of Physics, Yunnan University, Kunming, 650500, China
| | - Chaorun Li
- Department of Physics, Yunnan University, Kunming, 650500, China
| | - Luchun Du
- Department of Physics, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
2
|
Abamba OG, Kolebaje OT, Vincent UE, McClintock PVE. Vibrational resonance in bichromatically excited diatomic molecules in a shifted molecular potential. Phys Rev E 2024; 110:034209. [PMID: 39425406 DOI: 10.1103/physreve.110.034209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/26/2024] [Indexed: 10/21/2024]
Abstract
For bichromatically excited diatomic molecules modeled in a shifted Tietz-Wei molecular potential, we demonstrate the occurrence of vibrational resonance (VR) when a saddle-node (SN) bifurcation takes place and its nonoccurrence in the absence of an SN bifurcation. We have examined the VR phenomenon and its connection with SN bifurcation for eight diatomic molecules, namely, H_{2}, N_{2}, Cl_{2}, I_{2}, O_{2}, HF, CO, and NO, consisting of homogeneous, heterogenous, and halogen molecules. We demonstrate that each of them vibrates at a distinct resonant frequency but with a spread in frequency. The high-frequency amplitude at which VR occurs corresponds to the SN-bifurcation point. We validate our analytic results by numerical simulations and show that the homonuclear halogens respond only weakly to bichromatic fields, which may perhaps be linked to their absence of SN bifurcation.
Collapse
Affiliation(s)
| | - O T Kolebaje
- Department of Physics, Adeyemi University of Education, Ondo 350106, Nigeria
| | | | | |
Collapse
|
3
|
Djolieu Funaye M, Djuidjé Kenmoé G. Vibrational resonance in an asymmetric system modeled by an electronic circuit: Effect of the buffers. CHAOS (WOODBURY, N.Y.) 2024; 34:073131. [PMID: 38995989 DOI: 10.1063/5.0205268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Vibrational resonance (VR) has been extensively studied in symmetric circuits, but research on this phenomenon in asymmetric electronic circuits is understudied. The current study aims to model a novel asymmetric electronic circuit and investigate the occurrence of VR in the circuit. This oscillator shows changes according to four control parameters, with the aid of two buffers. The amplification of signals in electronic circuits gives interesting results, vibrational resonance is one of the phenomena which is based on the amplification of signals. In this study, the asymmetric strength caused by the potentiometers and the frequencies influence are the major aims explored. Interestingly, the circuit shows different types of behaviors that are pointed out through waveform profiles, bifurcation diagrams, largest Lyapunov exponent, and the phase portraits. The dynamic of the system is studied theoretically, numerically and by Pspice Simulation. The Pspice estimates match with numerical simulations. We use the response Q(ω) method, based on the sine and cosine of the Fourier component to study VR. Our discovery suggests that the asymmetric parameter and the amplitude of the high frequency, both affect the occurrence of vibrational resonance.
Collapse
Affiliation(s)
- M Djolieu Funaye
- Laboratory of Mechanics, Materials and Structures, Department of Physics, Faculty of Science, University of Yaounde I, 812, Yaounde, Cameroon
- Department of Physics and Pure Mathematics, PKFokam Institute of Excellence, 11646 Yaounde, Cameroon
| | - Germaine Djuidjé Kenmoé
- Laboratory of Mechanics, Materials and Structures, Department of Physics, Faculty of Science, University of Yaounde I, 812, Yaounde, Cameroon
| |
Collapse
|
4
|
Sarkar P, Ray DS. Tuning limit cycles with a noise: Survival and collapse. Phys Rev E 2024; 109:034209. [PMID: 38632777 DOI: 10.1103/physreve.109.034209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/15/2024] [Indexed: 04/19/2024]
Abstract
We consider a general class of limit cycle oscillators driven by an additive Gaussian white noise. Based on the separation of timescales, we construct the equation of motion for slow dynamics after appropriate averaging over the fast motion. The equation for slow motion whose coefficients are modified by noise characteristics is solved to obtain the analytic solution in the long time limit. We show that with increase of noise strength, the loop area of the limit cycle decreases until a critical value is reached, beyond which the limit cycle collapses. We determine the noise threshold from the condition for removal of secular divergence of the perturbation series and work out two explicit examples of Van der Pol and Duffing-Van der Pol oscillators for corroboration between the theory and numerics.
Collapse
Affiliation(s)
- Prasun Sarkar
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Deb Shankar Ray
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
5
|
Ashokkumar P, Kabilan R, Sathish Aravindh M, Venkatesan A, Lakshmanan M. Harnessing vibrational resonance to identify and enhance input signals. CHAOS (WOODBURY, N.Y.) 2024; 34:013129. [PMID: 38252785 DOI: 10.1063/5.0169195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
We report the occurrence of vibrational resonance and the underlying mechanism in a simple piecewise linear electronic circuit, namely, the Murali-Lakshmanan-Chua circuit, driven by an additional biharmonic signal with widely different frequencies. When the amplitude of the high-frequency force is tuned, the resultant vibrational resonance is used to detect the low-frequency signal and also to enhance it into a high-frequency signal. Further, we also show that even when the low-frequency signal is changed from sine wave to square and sawtooth waves, vibrational resonance can be used to detect and enhance them into high-frequency signals. These behaviors, confirmed by experimental results, are illustrated with appropriate analytical and numerical solutions of the corresponding circuit equations describing the system. Finally, we also verify the signal detection in the above circuit even with the addition of noise.
Collapse
Affiliation(s)
- P Ashokkumar
- PG & Research Department of Physics, Nehru Memorial College (Autonomous), Affiliated to Bharathidasan University, Puthanampatti, Tiruchirappalli 621 007, India
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India
| | - R Kabilan
- PG & Research Department of Physics, Nehru Memorial College (Autonomous), Affiliated to Bharathidasan University, Puthanampatti, Tiruchirappalli 621 007, India
| | - M Sathish Aravindh
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India
| | - A Venkatesan
- PG & Research Department of Physics, Nehru Memorial College (Autonomous), Affiliated to Bharathidasan University, Puthanampatti, Tiruchirappalli 621 007, India
| | - M Lakshmanan
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India
| |
Collapse
|
6
|
Chizhevsky VN, Lakhmitski MV. Improvement of signal propagation in the optoelectronic artificial spiking neuron by vibrational resonance. Phys Rev E 2024; 109:014211. [PMID: 38366496 DOI: 10.1103/physreve.109.014211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/04/2023] [Indexed: 02/18/2024]
Abstract
Experimental evidence of vibrational resonance (VR) in the optoelectronic artificial spiking neuron based on a single photon avalanche diode and a vertical cavity laser driven by two periodic signals with low and high frequencies is reported. It is shown that a very weak subthreshold low-frequency (LF) periodic signal can be greatly amplified by the additional high-frequency (HF) signal. The phenomenon shows up as a nonmonotonic resonant dependence of the LF response on the amplitude of the HF signal. Simultaneously, a strong resonant rise of the signal-to-noise ratio is also observed. In addition, for the characterization of VR an area under the first LF period in the probability density function of interspike intervals for the LF signal and the maximal amplitude in this area were used, both of which also demonstrate a resonant behavior depending on the amplitude of the HF signal.
Collapse
Affiliation(s)
- V N Chizhevsky
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - M V Lakhmitski
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| |
Collapse
|
7
|
Sarkar P, Banerjee D, Paul S, Ray DS. Method for direct analytic solution of the nonlinear Langevin equation using multiple timescale analysis: Mean-square displacement. Phys Rev E 2022; 106:024203. [PMID: 36109927 DOI: 10.1103/physreve.106.024203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
We consider a class of nonlinear Langevin equations with additive, Gaussian white noise. Because of nonlinearity, the calculation of moments poses a serious problem for any direct solution of the Langevin equation. Based on multiple timescale analysis we introduce a scheme for directly solving the equations. We first derive the equations for the fast and slow dynamics, in the spirit of the Blekhman perturbation method in vibrational mechanics, the fast motion being described by the Brownian motion of a harmonic oscillator whose effect is subsumed in the slow motion resulting in a parametrically driven nonlinear oscillator. The multiple timescale perturbation theory is then used to obtain a secular divergence-free analytic solution for the slow nonlinear dynamics for calculation of the moments. Our analytical results for mean-square displacement are corroborated with direct numerical simulation of Langevin equations.
Collapse
Affiliation(s)
- Prasun Sarkar
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Debarshi Banerjee
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Shibashis Paul
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Deb Shankar Ray
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
8
|
Madiot G, Barbay S, Braive R. Vibrational Resonance Amplification in a Thermo-Optic Optomechanical Nanocavity. NANO LETTERS 2021; 21:8311-8316. [PMID: 34550705 DOI: 10.1021/acs.nanolett.1c02879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Vibrational resonance is a generic phenomenon found in many different bistable systems whereby a weak low-frequency signal is amplified by use of an additional nonresonant high-frequency modulation. The realization of weak signal enhancement in integrated nonlinear optical nanocavities is of great interest for nanophotonic applications where optical signals may be of low power. Here, we report experimental observation of vibrational resonance in a thermo-optically bistable photonic crystal optomechanical resonator with an amplification up to +16 dB. The characterization of the bistability can interestingly be done using a mechanical resonance of the membrane, which is submitted to a strong thermoelastic coupling with the cavity.
Collapse
Affiliation(s)
- Guilhem Madiot
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France
| | - Sylvain Barbay
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France
| | - Rémy Braive
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France
- Université de Paris, F-75006 Paris, France
| |
Collapse
|
9
|
Sarkar P, Paul S, Ray DS. Subharmonics and superharmonics of the weak field in a driven two-level quantum system: Vibrational resonance enhancement. Phys Rev E 2021; 104:014202. [PMID: 34412231 DOI: 10.1103/physreve.104.014202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/09/2021] [Indexed: 11/07/2022]
Abstract
We consider a quantum two-level system in bichromatic classical time-periodic fields, the frequency of one of which far exceeds that of the other. Based on systematic separation of timescales and averaging over the fast motion a reduced quantum dynamics in the form of a nonlinear forced Mathieu equation is derived to identify the stable oscillatory resonance zones intercepted by unstable zones in the frequency-amplitude plot. We show how this forcing of the dressed two-level system may generate the subharmonics and superharmonics of the weak field in the stable region, which can be amplified by optimization of the strength of the high frequency field. We have carried out detailed numerical simulations of the driven quantum dynamics to corroborate the theoretical analysis.
Collapse
Affiliation(s)
- Prasun Sarkar
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Shibashis Paul
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Deb Shankar Ray
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
10
|
Alhadidi AH, Khazaaleh S, Daqaq MF. Suppression of galloping oscillations by injecting a high-frequency excitation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200244. [PMID: 33840213 DOI: 10.1098/rsta.2020.0244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2020] [Indexed: 05/22/2023]
Abstract
Galloping is an aeroelastic instability which incites oscillatory motion of elastic structures when subjected to an incident flow. Because galloping is often detrimental to the integrity of the structure, many research studies have focused on investigating methodologies to suppress these oscillations. These include using passive energy sinks, altering the surface characteristics of the structure, actively changing the shape of the boundary layer through momentum injection and using feedback control algorithms. In this paper, we demonstrate that the critical flow speed at which galloping is activated can be substantially increased by subjecting the galloping structure to a high-frequency non-resonant base excitation. The average effect of the high-frequency excitation is to produce additional linear damping in the slow response which serves to suppress the galloping instability. We study this approach theoretically and demonstrate its effectiveness using experimental tests performed on a galloping cantilevered structure. It is demonstrated that the galloping speed can be tripled in some experimental cases. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.
Collapse
Affiliation(s)
- Ali H Alhadidi
- Department of Mechanical Engineering, University of Jordan, Amman 11942, Jordan
| | | | | |
Collapse
|
11
|
Calim A, Palabas T, Uzuntarla M. Stochastic and vibrational resonance in complex networks of neurons. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200236. [PMID: 33840216 DOI: 10.1098/rsta.2020.0236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 05/22/2023]
Abstract
The concept of resonance in nonlinear systems is crucial and traditionally refers to a specific realization of maximum response provoked by a particular external perturbation. Depending on the system and the nature of perturbation, many different resonance types have been identified in various fields of science. A prominent example is in neuroscience where it has been widely accepted that a neural system may exhibit resonances at microscopic, mesoscopic and macroscopic scales and benefit from such resonances in various tasks. In this context, the two well-known forms are stochastic and vibrational resonance phenomena which manifest that detection and propagation of a feeble information signal in neural structures can be enhanced by additional perturbations via these two resonance mechanisms. Given the importance of network architecture in proper functioning of the nervous system, we here present a review of recent studies on stochastic and vibrational resonance phenomena in neuronal media, focusing mainly on their emergence in complex networks of neurons as well as in simple network structures that represent local behaviours of neuron communities. From this perspective, we aim to provide a secure guide by including theoretical and experimental approaches that analyse in detail possible reasons and necessary conditions for the appearance of stochastic resonance and vibrational resonance in neural systems. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.
Collapse
Affiliation(s)
- Ali Calim
- Department of Biomedical Engineering, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Tugba Palabas
- Department of Biomedical Engineering, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Muhammet Uzuntarla
- Department of Biomedical Engineering, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
12
|
Calim A, Longtin A, Uzuntarla M. Vibrational resonance in a neuron-astrocyte coupled model. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200267. [PMID: 33840211 DOI: 10.1098/rsta.2020.0267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 05/22/2023]
Abstract
Recent findings have revealed that not only neurons but also astrocytes, a special type of glial cells, are major players of neuronal information processing. It is now widely accepted that they contribute to the regulation of their microenvironment by cross-talking with neurons via gliotransmitters. In this context, we here study the phenomenon of vibrational resonance in neurons by considering their interaction with astrocytes. Our analysis of a neuron-astrocyte pair reveals that intracellular dynamics of astrocytes can induce a double vibrational resonance effect in the weak signal detection performance of a neuron, exhibiting two distinct wells centred at different high-frequency driving amplitudes. We also identify the underlying mechanism of this behaviour, showing that the interaction of widely separated time scales of neurons, astrocytes and driving signals is the key factor for the emergence and control of double vibrational resonance. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.
Collapse
Affiliation(s)
- Ali Calim
- Department of Biomedical Engineering, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Andre Longtin
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Muhammet Uzuntarla
- Department of Biomedical Engineering, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
13
|
Chizhevsky VN. Amplification of optical signals in a bistable vertical-cavity surface-emitting laser by vibrational resonance. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200241. [PMID: 33455547 DOI: 10.1098/rsta.2020.0241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 05/22/2023]
Abstract
The paper presents the results of the experimental study of an application of the phenomenon of vibrational resonance (VR) for enhancement of the response of a bistable vertical-cavity surface-emitting laser (VCSEL) to the effect of optical modulating signals. Specifically, two different cases were investigated: (a) the control of all-optical switching caused by a modulated orthogonal optical injection from another VCSEL and (b) the amplification of autodyne signals from a vibrating diffusely reflecting surface in the self-mixing optical interferometry. It is experimentally demonstrated that an application of the phenomenon of VR in both cases studied leads to a strong amplification of the input optical signals by a factor from 10 to 200 depending on the experimental conditions with respect to the initial values. The effect of the asymmetry of a bistable potential on the amplification factor was also studied. The results obtained can be used to improve all-optical switchings for application in communication systems and enhancement of autodyne signals in self-mixing optical interferometry. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.
Collapse
Affiliation(s)
- V N Chizhevsky
- B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk 220068, Belarus
| |
Collapse
|
14
|
Paul S, Shankar Ray D. Vibrational resonance in a driven two-level quantum system, linear and nonlinear response. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200231. [PMID: 33455551 DOI: 10.1098/rsta.2020.0231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/17/2020] [Indexed: 05/22/2023]
Abstract
We consider a two-level quantum system interacting with two classical time-periodic electromagnetic fields. The frequency of one of the fields far exceeds that of the other. The effect of the high-frequency field can be averaged out of the dynamics to realize an effective transition frequency of the field-dressed two-level system. We examine the linear response, second harmonic response and Stokes and anti-Stokes Raman response of the dressed two-level system, to the weak frequency field. The vibrational resonance enhancement in each case is demonstrated for optimal strength of the high-frequency field. Our theoretical scheme is corroborated by full numerical simulation of the two-level, two-field dynamics governed by loss-free Bloch equations. We suggest that quantum optics can offer an interesting arena for the study of the vibrational resonance. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.
Collapse
Affiliation(s)
- Shibashis Paul
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Deb Shankar Ray
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
15
|
Roy-Layinde TO, Vincent UE, Abolade SA, Popoola OO, Laoye JA, McClintock PVE. Vibrational resonances in driven oscillators with position-dependent mass. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200227. [PMID: 33455553 DOI: 10.1098/rsta.2020.0227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 05/22/2023]
Abstract
The vibrational resonance (VR) phenomenon has received a great deal of research attention over the two decades since its introduction. The wide range of theoretical and experimental results obtained has, however, been confined to VR in systems with constant mass. We now extend the VR formalism to encompass systems with position-dependent mass (PDM). We consider a generalized classical counterpart of the quantum mechanical nonlinear oscillator with PDM. By developing a theoretical framework for determining the response amplitude of PDM systems, we examine and analyse their VR phenomenona, obtain conditions for the occurrence of resonances, show that the role played by PDM can be both inductive and contributory, and suggest that PDM effects could usefully be explored to maximize the efficiency of devices being operated in VR modes. Our analysis suggests new directions for the investigation of VR in a general class of PDM systems. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.
Collapse
Affiliation(s)
- T O Roy-Layinde
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - U E Vincent
- Department of Physical Sciences, Redeemer's University, P.M.B. 230 Ede, Nigeria
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - S A Abolade
- Department of Physics, University of Ibadan, Ibadan, Nigeria
| | - O O Popoola
- Department of Physics, University of Ibadan, Ibadan, Nigeria
| | - J A Laoye
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - P V E McClintock
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| |
Collapse
|
16
|
Omoteso KA, Roy-Layinde TO, Laoye JA, Vincent UE, McClintock PVE. Acoustic vibrational resonance in a Rayleigh-Plesset bubble oscillator. ULTRASONICS SONOCHEMISTRY 2021; 70:105346. [PMID: 33011444 PMCID: PMC7786605 DOI: 10.1016/j.ultsonch.2020.105346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/06/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The phenomenon of vibrational resonance (VR) has been investigated in a Rayleigh-Plesset oscillator for a gas bubble oscillating in an incompressible liquid while driven by a dual-frequency force consisting of high-frequency, amplitude-modulated, weak, acoustic waves. The complex equation of the Rayleigh-Plesset bubble oscillator model was expressed as the dynamics of a classical particle in a potential well of the Liénard type, thus allowing us to use both numerical and analytic approaches to investigate the occurrence of VR. We provide clear evidence that an acoustically-driven bubble oscillates in a time-dependent single or double-well potential whose properties are determined by the density of the liquid and its surface tension. We show both theoretically and numerically that, besides the VR effect facilitated by the variation of the parameters on which the high-frequency depends, amplitude modulation, the properties of the liquid in which the gas bubble oscillates contribute significantly to the occurrence of VR. In addition, we discuss the observation of multiple resonances and their origin for the double-well case, as well as their connection to the low frequency, weak, acoustic force field.
Collapse
Affiliation(s)
- K A Omoteso
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - T O Roy-Layinde
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - J A Laoye
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - U E Vincent
- Department of Physical Sciences, Redeemer's University, P.M.B. 230, Ede, Nigeria; Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| | - P V E McClintock
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
17
|
Pal K, Ray DS. Antiresonance and Stabilization in Spatio‐Temporal Dynamics of a Periodically Driven Gray‐Scott Reaction‐Diffusion System. ChemistrySelect 2020. [DOI: 10.1002/slct.202002810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Krishnendu Pal
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, West Bengal India
| | - Deb Shankar Ray
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, West Bengal India
| |
Collapse
|
18
|
Yao C, He Z. Anormal diffusion enhancement of resonant responses for coupled oscillator networks to weak signals. CHAOS (WOODBURY, N.Y.) 2020; 30:083120. [PMID: 32872822 DOI: 10.1063/5.0006350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The normal diffusion effect is introduced as a new regulating factor into the established diffusive coupling model for bistable oscillator networks. We find that the response of the system to the weak signal is substantially enhanced by the anormal diffusion, which is termed anormal-diffusion-induced resonance. We also reveal that the diffusive coupling-induced transition, which changes the system from a bistable to a monostable state, is of fundamental importance for the occurrence of resonance. The proposed approach is validated using simulation studies and theoretical analyses. Our results suggest that diffusion induced resonance can be more easily observed in nonlinear oscillator networks.
Collapse
Affiliation(s)
- Chenggui Yao
- Department of Mathematics, Shaoxing University, Shaoxing 312000, China
| | - Zhiwei He
- Department of Mathematics, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
19
|
Du L, Han R, Jiang J, Guo W. Entropic vibrational resonance. Phys Rev E 2020; 102:012149. [PMID: 32795083 DOI: 10.1103/physreve.102.012149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/10/2020] [Indexed: 05/22/2023]
Abstract
We demonstrate the existence of vibrational resonance associated with the presence of an uneven boundary. When the motion of a Brownian particle is confined in a region with an uneven boundary, constrained to a double cavity, a high-frequency signal may produce a peak in the spectral power amplification of the other low-frequency signal and therefore to the appearance of the vibrational resonance phenomenon. The mechanism of vibrational resonance in constrained boundaries is different from that in energetic potentials and is termed entropic vibrational resonance (EVR). The EVR can be observed even if the bias force is absent in any direction. Through careful analysis, we clarify two types of mechanisms of the EVR. The one mechanism is ascribed to the transition from a bistable system to a monostable system, and the other corresponds to the match between the escape rate and the natural frequency of the low-frequency signal. Our work merges the vibrational resonance with an uneven boundary, thus extending the scope of the vibrational resonance and shedding new light on the concept of resonance.
Collapse
Affiliation(s)
- Luchun Du
- Department of Physics, Yunnan University, Kunming 650091, China
- School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
| | - Ruoshui Han
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Jiahao Jiang
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Wei Guo
- School of Physical Science and Technology, Kunming University, Kunming 650214, China
| |
Collapse
|
20
|
Weak signal enhancement by nonlinear resonance control in a forced nano-electromechanical resonator. Nat Commun 2020; 11:2400. [PMID: 32404882 PMCID: PMC7220937 DOI: 10.1038/s41467-020-15827-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/24/2020] [Indexed: 11/22/2022] Open
Abstract
Driven non-linear resonators can display sharp resonances or even multistable behaviours amenable to induce strong enhancements of weak signals. Such enhancements can make use of the phenomenon of vibrational resonance, whereby a weak low-frequency signal applied to a bistable resonator can be amplified by driving the non-linear oscillator with another appropriately-adjusted non-resonant high-frequency field. Here we demonstrate experimentally and theoretically a significant resonant enhancement of a weak signal by use of a vibrational force, yet in a monostable system consisting of a driven nano-electromechanical nonlinear resonator. The oscillator is subjected to a strong quasi-resonant drive and to two additional tones: a weak signal at lower frequency and a non-resonant driving at an intermediate frequency. We analyse this phenomenon in terms of coherent nonlinear resonance manipulation. Our results illustrate a general mechanism which might have applications in the fields of microwave signal amplification or sensing for instance. Designing efficient nonlinear dynamic resonances for weak signal amplification remains a challenge. Here, the authors demonstrate a resonance manipulation strategy able to enhance weak signals in a nonlinear oscillator consisting of an optically-probed driven nano-electromechanical resonator.
Collapse
|
21
|
Olusola OI, Shomotun OP, Vincent UE, McClintock PVE. Quantum vibrational resonance in a dual-frequency-driven Tietz-Hua quantum well. Phys Rev E 2020; 101:052216. [PMID: 32575245 DOI: 10.1103/physreve.101.052216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
We investigate the response of a quantum particle in the Tietz-Hua quantum potential driven by biharmonic fields: a low-frequency force and a very high frequency force. The response is characterized by the occurrence of a maximum in the first-order transition probability amplitude |s|^{2} under the influence of the applied fields. It is shown that in the absence of the high-frequency component of the applied fields, |s|^{2} shows a distinct sequence of resonances, whereas an increase in the amplitude of the high-frequency field induces minima in |s|^{2}. However, the |s|^{2} maximum occurs in the low-frequency regime where it may be considered otherwise weak in the presence of a single harmonic force.
Collapse
Affiliation(s)
- O I Olusola
- Department of Physics, University of Lagos, Lagos, Nigeria
| | - O P Shomotun
- Department of Physics, University of Lagos, Lagos, Nigeria
| | - U E Vincent
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Department of Physical Sciences, Redeemer's University, Ede, Nigeria
| | - P V E McClintock
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
22
|
Sarkar P, Ray DS. Vibrational antiresonance in nonlinear coupled systems. Phys Rev E 2019; 99:052221. [PMID: 31212415 DOI: 10.1103/physreve.99.052221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 06/09/2023]
Abstract
We examine the response of a system of coupled nonlinear oscillators driven by a rapidly varying field, to a low frequency weak periodic excitation of one of the oscillators. The response amplitude of the weak field-driven oscillator at an optimal strength of the rapidly varying field exhibits a strong suppression accompanied by a large negative shift in its oscillation phase. The minimum can be identified as vibrational antiresonance in between the two maxima corresponding to vibrational resonance. This vibrational antiresonance can be observed only in nonlinear coupled systems and not in linearly coupled systems or in a single nonlinear oscillator, under similar physical condition. We discuss the underlying dynamical mechanism, the role of nonlinearity and high frequency in characterizing this counter-resonance effect. Our theoretical analysis is corroborated by detailed numerical simulations.
Collapse
Affiliation(s)
- Prasun Sarkar
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Deb Shankar Ray
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
23
|
Zhu J, Kong C, Liu X. Subthreshold and suprathreshold vibrational resonance in the FitzHugh-Nagumo neuron model. Phys Rev E 2016; 94:032208. [PMID: 27739746 DOI: 10.1103/physreve.94.032208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 06/06/2023]
Abstract
We study the subthreshold and suprathreshold vibrational resonance in the FitzHugh-Nagumo neuron model. For the subthreshold situation, two cases where the stationary states are equilibrium point and limit cycle are considered, where different natures of vibrational resonance are observed via theoretical and numerical methods. Especially when the frequency of the high-frequency driving force is near the so-called canard-resonance frequency, the firing rate can be significantly enhanced at the presence of noise. For the suprathreshold situation, we show that the local maxima of the response amplitude are located at the transition boundaries of different phase-locking patterns. The minimal required forcing amplitudes of high-frequency signal of the firing onset are just multiples of the spiking frequency. Furthermore, phase portraits and time series show that the presence of the global maxima of the response results from not only the suprathreshold but also the subthreshold phase-locking modes. In spite of the distinct characteristics for two stationary states on subthreshold oscillation, the suprathreshold vibrational resonance showed no qualitative difference between the two cases.
Collapse
Affiliation(s)
- Jinjie Zhu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chen Kong
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xianbin Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
24
|
Roy-Layinde TO, Laoye JA, Popoola OO, Vincent UE. Analysis of vibrational resonance in bi-harmonically driven plasma. CHAOS (WOODBURY, N.Y.) 2016; 26:093117. [PMID: 27781458 DOI: 10.1063/1.4962403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The phenomenon of vibrational resonance (VR) is examined and analyzed in a bi-harmonically driven two-fluid plasma model with nonlinear dissipation. An equation for the slow oscillations of the system is analytically derived in terms of the parameters of the fast signal using the method of direct separation of motion. The presence of a high frequency externally applied electric field is found to significantly modify the system's dynamics, and consequently, induce VR. The origin of the VR in the plasma model has been identified, not only from the effective plasma potential but also from the contributions of the effective nonlinear dissipation. Beside several dynamical changes, including multiple symmetry-breaking bifurcations, attractor escapes, and reversed period-doubling bifurcations, numerical simulations also revealed the occurrence of single and double resonances induced by symmetry breaking bifurcations.
Collapse
Affiliation(s)
- T O Roy-Layinde
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - J A Laoye
- Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - O O Popoola
- Department of Physics, University of Ibadan, Ibadan, Nigeria
| | - U E Vincent
- Department of Physical Sciences, Redeemers' University, Ede, Nigeria
| |
Collapse
|
25
|
Sheshka R, Recho P, Truskinovsky L. Rigidity generation by nonthermal fluctuations. Phys Rev E 2016; 93:052604. [PMID: 27300948 DOI: 10.1103/physreve.93.052604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Indexed: 06/06/2023]
Abstract
Active stabilization in systems with zero or negative stiffness is an essential element of a wide variety of biological processes. We study a prototypical example of this phenomenon and show how active rigidity, interpreted as a formation of a pseudowell in the effective energy landscape, can be generated in an overdamped stochastic system. We link the transition from negative to positive rigidity with time correlations in the additive noise, and we show that subtle differences in the out-of-equilibrium driving may compromise the emergence of a pseudowell.
Collapse
Affiliation(s)
- R Sheshka
- LITEN, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble, France
| | - P Recho
- Mathematical Institute, University of Oxford, Oxford OX26GG, United Kingdom
- Engineering Department, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - L Truskinovsky
- LMS, CNRS-UMR 7649, École Polytechnique, 91128 Palaiseau, France
- Physique et Mecanique des Milieux Heterogenes CNRS -- UMR 7636 ESPCI ParisTech 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
26
|
Chizhevsky VN. Noise-induced suppression of nonlinear distortions in a bistable system with biharmonic excitation in vibrational resonance. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032902. [PMID: 26465535 DOI: 10.1103/physreve.92.032902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 06/05/2023]
Abstract
This paper is a report of the experimental evidence of suppression of vibrational higher-order harmonics in a bistable vertical-cavity surface-emitting laser driven by two harmonic signals with very different frequencies in the phenomenon of vibrational resonance when an optimal amount of white, Gaussian noise is applied. A quantitative characterization of the suppression is given on the basis of the coefficient of nonlinear distortions. The behavior of the coefficient of nonlinear distortions is studied in wide ranges of the added noise intensity, the dc current, and the amplitude of the harmonic signals. The experimental results are compared with a numerical simulation of a Langevin model showing good agreement.
Collapse
Affiliation(s)
- V N Chizhevsky
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| |
Collapse
|
27
|
Yao C, He Z, Luo J, Shuai J. Resonance induced by a spatially periodic force in the reaction-diffusion system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052901. [PMID: 26066223 DOI: 10.1103/physreve.91.052901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 06/04/2023]
Abstract
The stimulus-dynamic response is an important topic in physics. In this work, we study the dynamics in the reaction-diffusion system subjected to a weak signal and a spatially periodic force. We find that the response of the system to the weak signal is enhanced largely by the spatially periodic force, which is termed spatially periodic-force-induced resonance. In particular, the response becomes stronger when the spatial frequency is chosen such that the system synchronizes with spatially periodic force. This combinative behavior, i.e., the spatially periodic-force-induced resonance and the spatial-synchronization-enhanced resonance, is of great interest and may shed light on our understanding of the dynamics of nonlinear systems subjected to spatially periodic force in responding to a weak signal.
Collapse
Affiliation(s)
- Chenggui Yao
- Department of Mathematics, Shaoxing University, Shaoxing 312000, China
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhiwei He
- Department of Mathematics, Shaoxing University, Shaoxing 312000, China
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - JinMing Luo
- College of Science, China University of Mining and Technology, Xuzhou 221000, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
28
|
Chizhevsky VN. Vibrational higher-order resonances in an overdamped bistable system with biharmonic excitation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042924. [PMID: 25375584 DOI: 10.1103/physreve.90.042924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 06/04/2023]
Abstract
Experimental evidence of vibrational higher-order resonances in a bistable vertical-cavity surface-emitting laser driven by two harmonic signals with very different frequencies is reported. The phenomenon shows up in a parameter space (the dc current, the amplitude of the high-frequency signal) as well-defined structures with multiple local maxima at higher harmonics of the low-frequency signal. Such structures appear due to a strong suppression of higher harmonics for certain values of the high-frequency amplitude and the dc current. Complexity of the structures and the total number of the local maxima depend on the harmonic order k. The behavior of nonlinear distortion factor is also studied. The experimental results are in a good agreement with the numerical results which were obtained in the model of the bistable overdamped oscillator with biharmonic excitation.
Collapse
Affiliation(s)
- V N Chizhevsky
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| |
Collapse
|
29
|
Duan F, Chapeau-Blondeau F, Abbott D. Double-maximum enhancement of signal-to-noise ratio gain via stochastic resonance and vibrational resonance. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022134. [PMID: 25215715 DOI: 10.1103/physreve.90.022134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Indexed: 06/03/2023]
Abstract
This paper studies the signal-to-noise ratio (SNR) gain of a parallel array of nonlinear elements that transmits a common input composed of a periodic signal and external noise. Aiming to further enhance the SNR gain, each element is injected with internal noise components or high-frequency sinusoidal vibrations. We report that the SNR gain exhibits two maxima at different values of the internal noise level or of the sinusoidal vibration amplitude. For the addition of internal noise to an array of threshold-based elements, the condition for occurrence of stochastic resonance is analytically investigated in the limit of weak signals. Interestingly, when the internal noise components are replaced by high-frequency sinusoidal vibrations, the SNR gain displays the vibrational multiresonance phenomenon. In both considered cases, there are certain regions of the internal noise intensity or the sinusoidal vibration amplitude wherein the achieved maximal SNR gain can be considerably beyond unity for a weak signal buried in non-Gaussian external noise. Due to the easy implementation of sinusoidal vibration modulation, this approach is potentially useful for improving the output SNR in an array of nonlinear devices.
Collapse
Affiliation(s)
- Fabing Duan
- Institute of Complexity Science, Qingdao University, Qingdao 266071, China
| | - François Chapeau-Blondeau
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers, 62 avenue Notre Dame du Lac, 49000 Angers, France
| | - Derek Abbott
- Centre for Biomedical Engineering (CBME) and School of Electrical and Electronic Engineering, The University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
30
|
Chizhevsky VN. Experimental evidence of vibrational resonance in a multistable system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062914. [PMID: 25019858 DOI: 10.1103/physreve.89.062914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 06/03/2023]
Abstract
Experimental evidence of vibrational resonance in a multistable vertical-cavity surface-emitting laser (VCSEL) is reported. The VCSEL is characterized by a coexistence of four polarization states and driven by low-frequency (LF) and high-frequency (HF) periodic signals. In these conditions a series of resonances on the low frequency depending on the HF amplitude is observed. The location of resonances in a parameter space (dc current, amplitude of HF signal) is experimentally studied. For a fixed value of the dc current an evolution of the resonance curves with an increase of the LF amplitude is experimentally investigated.
Collapse
Affiliation(s)
- V N Chizhevsky
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| |
Collapse
|
31
|
Deng B, Wang J, Wei X, Yu H, Li H. Theoretical analysis of vibrational resonance in a neuron model near a bifurcation point. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062916. [PMID: 25019860 DOI: 10.1103/physreve.89.062916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Indexed: 06/03/2023]
Abstract
The FitzHugh-Nagumo neuron model subject to a biharmonical external force with two different frequencies is used to investigate the underlying mechanism of vibrational resonance in an excitable system in which the time scales between the fast and slow variables are separated clearly. The theoretical analysis is given based on the approximation approach and the concept of the phase-locking ratio instead of the amplification ratio widely used in the investigation of vibrational resonance in bistable oscillators. The result shows that the high-frequency subthreshold force with the frequency close to the natural frequency of the neuron model in the resting state can induce the change of potential shape of the model near the bifurcation point. This gives rise to the different phase-locking modes of the neuron responses to the same low-frequency subthreshold input. It is also shown that besides the parameters of the high-frequency force such as amplitude and frequency, the bifurcation parameter of the model can affect the vibrational resonance notably. Finally, the numerical results have verified the theoretical analysis.
Collapse
Affiliation(s)
- Bin Deng
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiang Wang
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xile Wei
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, People's Republic of China
| | - Haitao Yu
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, People's Republic of China
| | - Huiyan Li
- School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, People's Republic of China
| |
Collapse
|
32
|
Vibrational resonance in the FitzHugh–Nagumo system with time-varying delay feedback. Comput Biol Med 2014; 45:80-6. [DOI: 10.1016/j.compbiomed.2013.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/30/2013] [Accepted: 11/26/2013] [Indexed: 11/17/2022]
|
33
|
Ghosh S, Ray DS. Nonlinear vibrational resonance. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042904. [PMID: 24229246 DOI: 10.1103/physreve.88.042904] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Indexed: 06/02/2023]
Abstract
We examine the nonlinear response of a bistable system driven by a high-frequency force to a low-frequency weak field. It is shown that the rapidly varying temporal oscillation breaks the spatial symmetry of the centrosymmetric potential. This gives rise to a finite nonzero response at the second harmonic of the low-frequency field, which can be optimized by an appropriate choice of vibrational amplitude of the high-frequency field close to that for the linear response. The potential implications of the nonlinear vibrational resonance are analyzed.
Collapse
Affiliation(s)
- Shyamolina Ghosh
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | | |
Collapse
|
34
|
|
35
|
Chizhevsky VN. Enhancement of response of a bistable VCSEL to modulated orthogonal optical feedback by vibrational resonance. OPTICS LETTERS 2012; 37:4386-4388. [PMID: 23114304 DOI: 10.1364/ol.37.004386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
It is experimentally demonstrated that the response of a bistable vertical-cavity surface-emitting laser at a selected polarization to the effect of the modulated optical feedback at the orthogonal polarization can be considerably enhanced by the additional periodic current modulation via vibrational resonance. It shows up as a nonmonotonic dependence of the response at the frequency of the modulated optical feedback as a function of the amplitude of the current modulation. In such conditions the laser response can be amplified more than 80 times for a weak optical feedback. At the optimal amplitude of the current modulation a complete synchronization of optical switchings between polarization states with modulated optical feedback is observed. The effect of asymmetry of a bistable quasi-potential is also experimentally demonstrated.
Collapse
Affiliation(s)
- V N Chizhevsky
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus. ‑net.by
| |
Collapse
|
36
|
Yang L, Liu W, Yi M, Wang C, Zhu Q, Zhan X, Jia Y. Vibrational resonance induced by transition of phase-locking modes in excitable systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:016209. [PMID: 23005509 DOI: 10.1103/physreve.86.016209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Indexed: 06/01/2023]
Abstract
We study the occurrence of vibrational resonance as well as the underlying mechanism in excitable systems. The single vibration resonance and vibration bi-resonance are observed when tuning the amplitude and frequency of high-frequency force simultaneously. Furthermore, by virtue of the phase diagram of low-frequency-signal-free FitzHugh-Nagumo model, it is found that each maxima of response measure is located exactly at the transition boundary of phase patterns. Therefore, it is the transition between different phase-locking modes that induces vibrational resonance in the excitable systems. Finally, this mechanism is verified in the Hodgkin-Huxley neural model. Our results provide insights into the transmission of weak signals in nonlinear systems, which are valuable in engineering for potential applications.
Collapse
Affiliation(s)
- Lijian Yang
- Department of Physics and Institute of Biophysics, Central China Normal University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Yang JH, Zhu H. Vibrational resonance in Duffing systems with fractional-order damping. CHAOS (WOODBURY, N.Y.) 2012; 22:013112. [PMID: 22462988 DOI: 10.1063/1.3678788] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The phenomenon of vibrational resonance (VR) is investigated in over- and under-damped Duffing systems with fractional-order damping. It is found that the factional-order damping can induce change in the number of the steady stable states and then lead to single- or double-resonance behavior. Compared with vibrational resonance in the ordinary systems, the following new results are found in the fractional-order systems. (1) In the overdamped system with double-well potential and ordinary damping, there is only one kind of single-resonance, whereas there are double-resonance and two kinds of single-resonance for the case of fractional-order damping. The necessary condition for these new resonance behaviors is the value of the fractional-order satisfies α > 1. (2) In the overdamped system with single-well potential and ordinary damping, there is no resonance, whereas there is a single-resonance for the case of fractional-order damping. The necessary condition for the new result is α > 1. (3) In the underdamped system with double-well potential and ordinary damping, there are double-resonance and one kind of single-resonance, whereas there are double-resonance and two kinds of single-resonance for the case of fractional-order damping. The necessary condition for the new single-resonance is α < 1. (4) In the underdamped system with single-well potential, there is at most a single-resonance existing for both the cases of ordinary and fractional-order damping. In the underdamped systems, varying the value of the fractional-order is equivalent to change the damping parameter for some cases.
Collapse
Affiliation(s)
- J H Yang
- School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | | |
Collapse
|
38
|
Rajasekar S, Abirami K, Sanjuan MAF. Novel vibrational resonance in multistable systems. CHAOS (WOODBURY, N.Y.) 2011; 21:033106. [PMID: 21974641 DOI: 10.1063/1.3610213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We investigate the role of multistable states on the occurrence of vibrational resonance in a periodic potential system driven by both a low-frequency and a high-frequency periodic force in both underdamped and overdamped limits. In both cases, when the amplitude of the high-frequency force is varied, the response amplitude at the low-frequency exhibits a series of resonance peaks and approaches a limiting value. Using a theoretical approach, we analyse the mechanism of multiresonance in terms of the resonant frequency and the stability of the equilibrium points of the equation of motion of the slow variable. In the overdamped system, the response amplitude is always higher than in the absence of the high-frequency force. However, in the underdamped system, this happens only if the low-frequency is less than 1. In the underdamped system, the response amplitude is maximum when the equilibrium point around which slow oscillations take place is maximally stable and minimum at the transcritical bifurcation. And in the overdamped system, it is maximum at the transcritical bifurcation and minimum when the associated equilibrium point is maximally stable. When the periodicity of the potential is truncated, the system displays only a few resonance peaks.
Collapse
Affiliation(s)
- S Rajasekar
- School of Physics, Bharathidasan University, Tiruchirapalli, Tamilnadu 620 024, India.
| | | | | |
Collapse
|
39
|
Yao C, Liu Y, Zhan M. Frequency-resonance-enhanced vibrational resonance in bistable systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:061122. [PMID: 21797317 DOI: 10.1103/physreve.83.061122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/14/2011] [Indexed: 05/31/2023]
Abstract
The dynamics in an overdamped bistable system subject to the action of two periodic forces (assuming their frequencies are ω and Ω, and amplitudes are A and B, respectively) is studied. For the usual vibrational resonance, the nonmonotonic dependence of signal output of the low frequency ω on the change of B for a fixed Ω, the condition Ω≫ω is always assumed in all previous studies. Here, removing this restriction, we find that a resonant behavior can extensively occur with respect to the changes of both the frequency Ω and amplitude B. Especially, the resonance becomes stronger when Ω is chosen such that it is exactly in frequency resonance with ω. This combinative behavior, called frequency-resonance-enhanced vibrational resonance, is of great interest and may shed an improved light on our understanding of the dynamics of nonlinear systems subject to a biharmonic force.
Collapse
Affiliation(s)
- Chenggui Yao
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | | | | |
Collapse
|
40
|
Jeevarathinam C, Rajasekar S, Sanjuán MAF. Theory and numerics of vibrational resonance in Duffing oscillators with time-delayed feedback. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:066205. [PMID: 21797459 DOI: 10.1103/physreve.83.066205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/12/2011] [Indexed: 05/31/2023]
Abstract
The influence of linear time-delayed feedback on vibrational resonance is investigated in underdamped and overdamped Duffing oscillators with double-well and single-well potentials driven by both low frequency and high frequency periodic forces. This task is performed through both theoretical approach and numerical simulation. Theoretically determined values of the amplitude of the high frequency force and the delay time at which resonance occurs are in very good agreement with the numerical simulation. A major consequence of time-delayed feedback is that it gives rise to a periodic or quasiperiodic pattern of vibrational resonance profile with respect to the time-delayed parameter. An appropriate time delay is shown to induce a resonance in an overdamped single-well system which is otherwise not possible. For a range of values of the time-delayed parameters, the response amplitude is found to be larger than in delay-time feedback-free systems.
Collapse
Affiliation(s)
- C Jeevarathinam
- School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India
| | | | | |
Collapse
|
41
|
Shi J, Huang C, Dong T, Zhang X. High-frequency and low-frequency effects on vibrational resonance in a synthetic gene network. Phys Biol 2010; 7:036006. [DOI: 10.1088/1478-3975/7/3/036006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Yang JH, Liu XB. Controlling vibrational resonance in a multistable system by time delay. CHAOS (WOODBURY, N.Y.) 2010; 20:033124. [PMID: 20887064 DOI: 10.1063/1.3481343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The phenomenon of vibrational resonance in a delayed multistable system that is excited by biharmonic signals is investigated in the present paper. Different from the former theory, the appearance and the disappearance of the vibrational resonance are controlled by adjusting the time delay parameter instead of modulating the amplitude of the high-frequency signal. The motion of the orbit within or between the different potential wells can also be controlled. Furthermore, based on both the methods of numerical simulation and analytical analysis, the behavior of delay-induced multiple vibrational resonance and its mechanism are investigated and discussed. The multiple vibrational resonance, which is quantified by the response amplitude at the low-frequency, is found to be periodic in the delay parameter with two periods, i.e., the periods of the two driven signals. The method used in this paper gives a new way for controlling vibrational resonance in a multistable system.
Collapse
Affiliation(s)
- J H Yang
- Institute of Vibration Engineering Research, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China.
| | | |
Collapse
|
43
|
Yao C, Zhan M. Signal transmission by vibrational resonance in one-way coupled bistable systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:061129. [PMID: 20866400 DOI: 10.1103/physreve.81.061129] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/27/2010] [Indexed: 05/29/2023]
Abstract
Low-frequency signal transmission in one-way coupled bistable systems subject to a high-frequency force is studied. Two cases including the high-frequency force on all sites (case 1) and only on the first site (case 2) are considered. In these two cases, vibrational resonance induced by the high-frequency force can play an active role to effectively improve the signal transmission, and undamped signal transmission can be found in a broad parameter region. The combinative action of injected low-frequency signal, high-frequency driving, and coupling is of importance. Our findings suggest that high-frequency signal could be properly used in low-frequency signal transmission, and especially the implementation of high-frequency force simply on the first site for case 2 is meaningful for its simplicity and high efficiency.
Collapse
Affiliation(s)
- Chenggui Yao
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Whang 430071, China
| | | |
Collapse
|
44
|
Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuan MAF. Analysis of vibrational resonance in a quintic oscillator. CHAOS (WOODBURY, N.Y.) 2009; 19:043128. [PMID: 20059224 DOI: 10.1063/1.3272207] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We consider a damped quintic oscillator with double-well and triple-well potentials driven by both low-frequency force f cos (omega)t and high-frequency force g cos (Omega)t with Omega>>omega and analyze the occurrence of vibrational resonance. The response consists of a slow motion with frequency omega and a fast motion with frequency Omega. We obtain an approximate analytical expression for the response amplitude Q at the low-frequency omega. From the analytical expression of Q, we determine the values of omega and g (denoted as omega(VR) and g(VR)) at which vibrational resonance occurs. The theoretical predictions are found to be in good agreement with numerical results. We show that for fixed values of the parameters of the system, as omega varies, resonance occurs at most one value of omega. When the amplitude g is varied we found two and four resonances in the system with double-well and triple-well cases, respectively. We present examples of resonance (i) without cross-well motion and (ii) with cross-well orbit far before and far after it. omega(VR) depends on the damping strength d while g(VR) is independent of d. Moreover, the effect of d is found to decrease the response amplitude Q.
Collapse
Affiliation(s)
- S Jeyakumari
- Department of Physics, Sri KGS Arts College, Srivaikuntam, Tamilnadu 628 619, Spain
| | | | | | | |
Collapse
|
45
|
Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuan MAF. Single and multiple vibrational resonance in a quintic oscillator with monostable potentials. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:046608. [PMID: 19905472 DOI: 10.1103/physreve.80.046608] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Indexed: 05/28/2023]
Abstract
We analyze the occurrence of vibrational resonance in a damped quintic oscillator with three cases of single well of the potential V(x)=1/2omega(0)(2)x(2)+1/4betax(4)+1/6gammax(6) driven by both low-frequency force f cos omegat and high-frequency force g cos Omegat with Omega >> omega. We restrict our analysis to the parametric choices (i) omega(0)(2), beta, gamma > 0 (single well), (ii) omega(0)(2), gamma > 0, beta < 0, beta(2) < 4omega(0)(2)gamma (single well), and (iii) omega(0)(2) > 0, beta arbitrary, gamma < 0 (double-hump single well). From the approximate theoretical expression of response amplitude Q at the low-frequency omega we determine the values of omega and g (denoted as omega(VR) and g(VR)) at which vibrational resonance occurs. We show that for fixed values of the parameters of the system when omega is varied either resonance does not occur or it occurs only once. When the amplitude g is varied for the case of the potential with the parametric choice (i) at most one resonance occur while for the other two choices (ii) and (iii) multiple resonance occur. Further, g(VR) is found to be independent of the damping strength d while omega(VR) depends on d. The theoretical predictions are found to be in good agreement with the numerical result. We illustrate that the vibrational resonance can be characterized in terms of width of the orbit also.
Collapse
Affiliation(s)
- S Jeyakumari
- Department of Physics, Sri KGS Arts College, Srivaikuntam, Tamilnadu, India
| | | | | | | |
Collapse
|
46
|
Feito M, Baltanás JP, Cao FJ. Rocking feedback-controlled ratchets. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:031128. [PMID: 19905083 DOI: 10.1103/physreve.80.031128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/22/2009] [Indexed: 05/28/2023]
Abstract
We investigate the different regimes that emerge when a periodic driving force, the rocking force, acts on a collective feedback flashing ratchet. The interplay of the rocking and the feedback control gives a rich dynamics with different regimes presenting several unexpected features. In particular, we show that for both the one-particle ratchet and the collective version of the ratchet an appropriate rocking increases the flux. This mechanism gives the maximum flux that has been achieved in a ratchet device without an a priori bias.
Collapse
Affiliation(s)
- M Feito
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | | | | |
Collapse
|
47
|
Chizhevsky VN, Giacomelli G. Vibrational resonance and the detection of aperiodic binary signals. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:051126. [PMID: 18643045 DOI: 10.1103/physreve.77.051126] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Indexed: 05/26/2023]
Abstract
We present the experimental and numerical study of a method for detecting aperiodic binary signals in a bistable, vertical cavity surface emitting laser (VCSEL). The method uses the phenomenon of vibrational resonance, in presence of a fixed level of noise. We show that the addition of a periodic signal with a period much shorter than the bit duration of the aperiodic input signal allows one to significantly increase the cross-correlation coefficient between the input and the output, as well as to substantially decrease the bit error rate. The experimental observation of a time lag between the input and the output of the VCSEL due the high-frequency modulation is reported. The effect of an asymmetry of the bistable quasipotential on the detection is also analyzed. The numerical results of simulations in a simple model are in qualitative agreement with the experiment.
Collapse
Affiliation(s)
- V N Chizhevsky
- B.I. Stepanov Institute of Physics, NASB, 220072 Minsk, Belarus.
| | | |
Collapse
|
48
|
Khovanov IA, McClintock PVE. Synchronization of stochastic bistable systems by biperiodic signals. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:031122. [PMID: 17930214 DOI: 10.1103/physreve.76.031122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Indexed: 05/25/2023]
Abstract
We study the nonlinear response of a noisy bistable system to a biperiodic signal through experiments with an electronic circuit (Schmitt trigger). The signal we use is a biharmonic one, i.e., a superposition of low and high frequency harmonic components. It is shown that the mean switching frequency (MSF) of the system can be locked at both low and high frequencies. Moreover, the phenomenon of MSF locking at the lower frequency can be induced and enhanced by the higher frequency excitation. Thus high frequency bias can control synchronization at the low frequency.
Collapse
Affiliation(s)
- I A Khovanov
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| | | |
Collapse
|
49
|
Chizhevsky VN, Giacomelli G. Experimental and theoretical study of vibrational resonance in a bistable system with asymmetry. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:022103. [PMID: 16605374 DOI: 10.1103/physreve.73.022103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 10/07/2005] [Indexed: 05/08/2023]
Abstract
We present a theoretical and experimental study of the phenomenon of vibrational resonance in a bistable vertical cavity surface emitting laser with asymmetrical double-well quasipotential. Several relations, found analytically, are compared with the experimental and numerical results. Additionally, we investigate the effect of additive noise.
Collapse
Affiliation(s)
- V N Chizhevsky
- B.I. Stepanov Institute of Physics, NASB, 220072 Minsk, Belarus.
| | | |
Collapse
|
50
|
Borromeo M, Marchesoni F. Vibrational ratchets. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:016142. [PMID: 16486251 DOI: 10.1103/physreve.73.016142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Indexed: 05/06/2023]
Abstract
Transport in one-dimensional symmetric devices can be activated by the combination of thermal noise and a biharmonic drive. For the study case of an overdamped Brownian particle diffusing on a periodic one-dimensional substrate, we distinguish two apparently different biharmonic regimes: (i) Harmonic mixing, where the two drive frequencies are commensurate and of the order of some intrinsic relaxation rate. Earlier predictions based on perturbation expansions seem inadequate to interpret our simulation results; (ii) Vibrational mixing, where one harmonic drive component is characterized by high frequency but finite amplitude-to-frequency ratio. Its effect on the device response to either a static or a low-frequency additional input signal is accurately reproduced by rescaling each spatial Fourier component of the substrate potential, separately. Contrary to common wisdom, based on the linear response theory, we show that extremely high-frequency modulations can indeed influence the response of slowly (or dc) operated devices, with potential applications in sensor technology and cellular physiology. Finally, the mixing of two high-frequency beating signal is also investigated both numerically and analytically.
Collapse
Affiliation(s)
- M Borromeo
- Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
| | | |
Collapse
|