• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4695741)   Today's Articles (39)
For: Dmitriev SV, Kevrekidis PG, Malomed BA, Frantzeskakis DJ. Two-soliton collisions in a near-integrable lattice system. Phys Rev E Stat Nonlin Soft Matter Phys 2003;68:056603. [PMID: 14682902 DOI: 10.1103/physreve.68.056603] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2003] [Revised: 09/02/2003] [Indexed: 05/24/2023]
Number Cited by Other Article(s)
1
Malomed BA. Discrete and Semi-Discrete Multidimensional Solitons and Vortices: Established Results and Novel Findings. ENTROPY (BASEL, SWITZERLAND) 2024;26:137. [PMID: 38392392 PMCID: PMC10887582 DOI: 10.3390/e26020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024]
2
Mithun T, Maluckov A, Mančić A, Khare A, Kevrekidis PG. How close are integrable and nonintegrable models: A parametric case study based on the Salerno model. Phys Rev E 2023;107:024202. [PMID: 36932573 DOI: 10.1103/physreve.107.024202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
3
Ruban VP. Discrete vortices on spatially nonuniform two-dimensional electric networks. Phys Rev E 2020;102:012204. [PMID: 32794945 DOI: 10.1103/physreve.102.012204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
4
Ndzana FI, Mohamadou A. On the effect of discreteness in the modulation instability for the Salerno model. CHAOS (WOODBURY, N.Y.) 2017;27:073118. [PMID: 28764394 DOI: 10.1063/1.4995357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
5
Dutta O, Gajda M, Hauke P, Lewenstein M, Lühmann DS, Malomed BA, Sowiński T, Zakrzewski J. Non-standard Hubbard models in optical lattices: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015;78:066001. [PMID: 26023844 DOI: 10.1088/0034-4885/78/6/066001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
6
Liu B, He XD, Li SJ. Phase controlling of collisions between solitons in the two-dimensional complex Ginzburg-Landau equation without viscosity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011;84:056607. [PMID: 22181536 DOI: 10.1103/physreve.84.056607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/23/2011] [Indexed: 05/31/2023]
7
Novoa D, Malomed BA, Michinel H, Pérez-García VM. Supersolitons: solitonic excitations in atomic soliton chains. PHYSICAL REVIEW LETTERS 2008;101:144101. [PMID: 18851531 DOI: 10.1103/physrevlett.101.144101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Indexed: 05/26/2023]
8
Dmitriev SV, Kevrekidis PG, Kivshar YS. Radiationless energy exchange in three-soliton collisions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008;78:046604. [PMID: 18999548 DOI: 10.1103/physreve.78.046604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Indexed: 05/27/2023]
9
Oxtoby OF, Barashenkov IV. Moving solitons in the discrete nonlinear Schrödinger equation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007;76:036603. [PMID: 17930353 DOI: 10.1103/physreve.76.036603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 07/17/2007] [Indexed: 05/25/2023]
10
Gómez-Gardeñes J, Malomed BA, Floría LM, Bishop AR. Discrete solitons and vortices in the two-dimensional Salerno model with competing nonlinearities. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006;74:036607. [PMID: 17025764 DOI: 10.1103/physreve.74.036607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Indexed: 05/12/2023]
11
Gomez-Gardeñes J, Malomed BA, Floría LM, Bishop AR. Solitons in the Salerno model with competing nonlinearities. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006;73:036608. [PMID: 16605678 DOI: 10.1103/physreve.73.036608] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Indexed: 05/08/2023]
12
Gómez-Gardeñes J, Floría LM, Peyrard M, Bishop AR. Nonintegrable Schrodinger discrete breathers. CHAOS (WOODBURY, N.Y.) 2004;14:1130-1147. [PMID: 15568927 DOI: 10.1063/1.1811991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA