Das A, Chatterjee S, Pradhan P, Mohanty PK. Additivity property and emergence of power laws in nonequilibrium steady states.
Phys Rev E 2015;
92:052107. [PMID:
26651647 DOI:
10.1103/physreve.92.052107]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Indexed: 11/07/2022]
Abstract
We show that an equilibriumlike additivity property can remarkably lead to power-law distributions observed frequently in a wide class of out-of-equilibrium systems. The additivity property can determine the full scaling form of the distribution functions and the associated exponents. The asymptotic behavior of these distributions is solely governed by branch-cut singularity in the variance of subsystem mass. To substantiate these claims, we explicitly calculate, using the additivity property, subsystem mass distributions in a wide class of previously studied mass aggregation models as well as in their variants. These results could help in the thermodynamic characterization of nonequilibrium critical phenomena.
Collapse