1
|
Ruscher C, Ciarella S, Luo C, Janssen LMC, Farago J, Baschnagel J. Glassy dynamics of a binary Voronoi fluid: a mode-coupling analysis. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:064001. [PMID: 33105111 DOI: 10.1088/1361-648x/abc4cc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The binary Voronoi mixture is a fluid model whose interactions are derived from the Voronoi-Laguerre tessellation of the configurations of the system. The resulting interactions are local and many-body. Here we perform molecular-dynamics (MD) simulations of an equimolar mixture that is weakly polydisperse and additive. For the first time we study the structural relaxation of this mixture in the supercooled-liquid regime. From the simulations we determine the time- and temperature-dependent coherent and incoherent scattering functions for a large range of wave vectors, as well as the mean-square displacements of both particle species. We perform a detailed analysis of the dynamics by comparing the MD results with the first-principles-based idealized mode-coupling theory (MCT). To this end, we employ two approaches: fits to the asymptotic predictions of the theory, and fit-parameter-free binary MCT calculations based on static-structure-factor input from the simulations. We find that many-body interactions of the Voronoi mixture do not lead to strong qualitative differences relative to similar analyses carried out for simple liquids with pair-wise interactions. For instance, the fits give an exponent parameter λ ≈ 0.746 comparable to typical values found for simple liquids, the wavevector dependence of the Kohlrausch relaxation time is in good qualitative agreement with literature results for polydisperse hard spheres, and the MCT calculations based on static input overestimate the critical temperature, albeit only by a factor of about 1.2. This overestimation appears to be weak relative to other well-studied supercooled-liquid models such as the binary Kob-Andersen Lennard-Jones mixture. Overall, the agreement between MCT and simulation suggests that it is possible to predict several microscopic dynamic properties with qualitative, and in some cases near-quantitative, accuracy based solely on static two-point structural correlations, even though the system itself is inherently governed by many-body interactions.
Collapse
Affiliation(s)
- C Ruscher
- Université de Strasbourg, Institut Charles Sadron, CNRS-UPR22, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
- Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia, Vancouver BC V6T 1Z1, Canada
| | - S Ciarella
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands
| | - C Luo
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands
| | - L M C Janssen
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600MB Eindhoven, The Netherlands
| | - J Farago
- Université de Strasbourg, Institut Charles Sadron, CNRS-UPR22, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - J Baschnagel
- Université de Strasbourg, Institut Charles Sadron, CNRS-UPR22, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
2
|
Rovigatti L, Nava G, Bellini T, Sciortino F. Self-Dynamics and Collective Swap-Driven Dynamics in a Particle Model for Vitrimers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02186] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lorenzo Rovigatti
- CNR-ISC,
Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
- Department
of Physics, Sapienza, Universitá di Roma, Piazzale Aldo
Moro 2, I-00185, Roma, Italy
| | - Giovanni Nava
- Department
of Medical Biotechnology and Translational Medicine, Universita degli Studi di Milano, via Fratelli Cervi 93, I-20090 Segrate, MI, Italy
| | - Tommaso Bellini
- Department
of Medical Biotechnology and Translational Medicine, Universita degli Studi di Milano, via Fratelli Cervi 93, I-20090 Segrate, MI, Italy
| | - Francesco Sciortino
- Department
of Physics, Sapienza, Universitá di Roma, Piazzale Aldo
Moro 2, I-00185, Roma, Italy
| |
Collapse
|
3
|
Odinokov A, Freidzon A, Bagaturyants A. Molecular dynamics simulation of the glass transition in 4,4′-N,N′-dicarbazolylbiphenyl. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Colmenero J. Are polymers standard glass-forming systems? The role of intramolecular barriers on the glass-transition phenomena of glass-forming polymers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:103101. [PMID: 25634723 DOI: 10.1088/0953-8984/27/10/103101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Traditionally, polymer melts have been considered archetypal glass-formers. This has been mainly due to the fact that these systems can easily be obtained as glasses by cooling from the melt, even at low cooling rates. However, the macromolecules, i.e. the structural units of polymer systems in general, are rather different from the standard molecules. They are long objects ('chains') made by repetition of a given chemical motif (monomer) and have intra-macromolecular barriers that limit their flexibility. The influence of these properties on, for instance, the glass-transition temperature of polymers, is a topic that has been widely studied by the polymer community almost from the early times of polymer science. However, in the framework of the glass-community, the relevant influence of intra-macromolecular barriers and chain connectivity on glass-transition phenomena of polymers has started to be recognized only recently. The aim of this review is to give an overview and to critically revise the results reported on this topic over the last years. From these results, it seems to be evident that there are two different mechanisms involved in the dynamic arrest in glass-forming polymers: (i) the intermolecular packing effects, which dominate the dynamic arrest of low molecular weight glass-forming systems; and (ii) the effect of intra-macromolecular barriers combined with chain connectivity. It has also been shown that the mode coupling theory (MCT) is a suitable theoretical framework to discuss these questions. The values found for polymers for the central MCT parameter--the so-called λ-exponent--are of the order of 0.9, clearly higher than the standard values (λ ≈ 0.7) found in systems where the dynamic arrest is mainly driven by packing effects ('standard' glass-formers). Within the MCT, this is a signature of the presence of two competing mechanisms of dynamic arrest, as it has been observed in short-ranged attractive colloids or two component mixtures with dynamic asymmetry. Moreover, recent MD-simulations of a 'bead-spring' polymer model, but including intra-macromolecular potential of different strengths, confirm that the high λ-values found in polymers are due to the effect of intra-macromolecular barriers. Although there are still open questions, these results allow to conclude that there is a fundamental difference between the nature of the glass transition in polymers and in simple (standard) glass-formers.
Collapse
Affiliation(s)
- J Colmenero
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| |
Collapse
|
5
|
Frey S, Weysser F, Meyer H, Farago J, Fuchs M, Baschnagel J. Simulated glass-forming polymer melts: dynamic scattering functions, chain length effects, and mode-coupling theory analysis. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:97. [PMID: 25715952 DOI: 10.1140/epje/i2015-15011-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/09/2015] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
We present molecular-dynamics simulations for a fully flexible model of polymer melts with different chain length N ranging from short oligomers (N = 4) to values near the entanglement length (N = 64). For these systems we explore the structural relaxation of the supercooled melt near the critical temperature T c of mode-coupling theory (MCT). Coherent and incoherent scattering functions are analyzed in terms of the idealized MCT. For temperatures T > T c we provide evidence for the space-time factorization property of the β relaxation and for the time-temperature superposition principle (TTSP) of the α relaxation, and we also discuss deviations from these predictions for T ≈ T c. For T larger than the smallest temperature where the TTSP holds we perform a quantitative analysis of the dynamics with the asymptotic MCT predictions for the late β regime. Within MCT a key quantity, in addition to T c, is the exponent parameter λ. For the fully flexible polymer models studied we find that λ is independent of N and has a value (λ = 0.735 ) typical of simple glass-forming liquids. On the other hand, the critical temperature increases with chain length toward an asymptotic value T c (∞) . This increase can be described by T c (∞) - T c(N) ∼ 1/N and may be interpreted in terms of the N dependence of the monomer density ρ, if we assume that the MCT glass transition is ruled by a soft-sphere-like constant coupling parameter Γ c = ρ c T c (-1/4), where ρ c is the monomer density at T c. In addition, we also estimate T c from a Hansen-Verlet-like criterion and MCT calculations based on structural input from the simulation. For our polymer model both the Hansen-Verlet criterion and the MCT calculations suggest T c to decrease with increasing chain length, in contrast to the direct analysis of the simulation data.
Collapse
Affiliation(s)
- S Frey
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR 22, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | | | | | | | | | | |
Collapse
|
6
|
Petzold N, Schmidtke B, Kahlau R, Bock D, Meier R, Micko B, Kruk D, Rössler EA. Evolution of the dynamic susceptibility in molecular glass formers: Results from light scattering, dielectric spectroscopy, and NMR. J Chem Phys 2013; 138:12A510. [DOI: 10.1063/1.4770055] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
7
|
Boué L, Hentschel HGE, Ilyin V, Procaccia I. Statistical Mechanics of Glass Formation in Molecular Liquids with OTP as an Example. J Phys Chem B 2011; 115:14301-10. [DOI: 10.1021/jp205773c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laurent Boué
- The Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - H. G. E. Hentschel
- The Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Valery Ilyin
- The Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Itamar Procaccia
- The Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
8
|
Pedersen UR, Harrowell P. Factors Contributing to the Glass-Forming Ability of a Simulated Molecular Liquid. J Phys Chem B 2011; 115:14205-9. [DOI: 10.1021/jp205013w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ulf R. Pedersen
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Peter Harrowell
- School of Chemistry, University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
9
|
Pedersen UR, Hudson TS, Harrowell P. Crystallization of the Lewis–Wahnströmortho-terphenyl model. J Chem Phys 2011; 134:114501. [DOI: 10.1063/1.3559153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
10
|
Bernabei M, Moreno AJ, Zaccarelli E, Sciortino F, Colmenero J. From caging to Rouse dynamics in polymer melts with intramolecular barriers: A critical test of the mode coupling theory. J Chem Phys 2011; 134:024523. [DOI: 10.1063/1.3525147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Weysser F, Puertas AM, Fuchs M, Voigtmann T. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:011504. [PMID: 20866622 DOI: 10.1103/physreve.82.011504] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/26/2010] [Indexed: 05/29/2023]
Abstract
We analyze the slow glassy structural relaxation as measured through collective and tagged-particle density correlation functions obtained from Brownian dynamics simulations for a polydisperse system of quasi-hard spheres in the framework of the mode-coupling theory (MCT) of the glass transition. Asymptotic analyses show good agreement for the collective dynamics when polydispersity effects are taken into account in a multicomponent calculation, but qualitative disagreement at small q when the system is treated as effectively monodisperse. The origin of the different small-q behavior is attributed to the interplay between interdiffusion processes and structural relaxation. Numerical solutions of the MCT equations are obtained taking properly binned partial static structure factors from the simulations as input. Accounting for a shift in the critical density, the collective density correlation functions are well described by the theory at all densities investigated in the simulations, with quantitative agreement best around the maxima of the static structure factor and worst around its minima. A parameter-free comparison of the tagged-particle dynamics however reveals large quantitative errors for small wave numbers that are connected to the well-known decoupling of self-diffusion from structural relaxation and to dynamical heterogeneities. While deviations from MCT behavior are clearly seen in the tagged-particle quantities for densities close to and on the liquid side of the MCT glass transition, no such deviations are seen in the collective dynamics.
Collapse
Affiliation(s)
- F Weysser
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
12
|
Dendzik Z, Górny K, Gburski Z. Cooperative dipolar relaxation of a glycerol molecular cluster in nanoscale confinement-a computer simulation study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:425101. [PMID: 21715856 DOI: 10.1088/0953-8984/21/42/425101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We performed an all-atoms molecular dynamics simulation of a glycerol molecular cluster confined in single-walled carbon nanotubes of different diameters to study the confinement size effect on the dipolar relaxation of glycerol molecules. We show that the many-body approach proposed by Dissado and Hill can be directly applied to simulation data and provides quantitative information concerning the cooperative nature of the dipolar relaxation of molecules in nanoscale confinement.
Collapse
Affiliation(s)
- Z Dendzik
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | | | | |
Collapse
|
13
|
De Gaetani L, Prampolini G, Tani A. Subdiffusive dynamics of a liquid crystal in the isotropic phase. J Chem Phys 2008; 128:194501. [DOI: 10.1063/1.2916681] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
14
|
Zaccarelli E, Sciortino F, Tartaglia P. A spherical model with directional interactions. I. Static properties. J Chem Phys 2007; 127:174501. [DOI: 10.1063/1.2799522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Chong SH, Aichele M, Meyer H, Fuchs M, Baschnagel J. Structural and conformational dynamics of supercooled polymer melts: insights from first-principles theory and simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:051806. [PMID: 18233680 DOI: 10.1103/physreve.76.051806] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Indexed: 05/25/2023]
Abstract
We report on quantitative comparisons between simulation results of a bead-spring model and mode-coupling theory calculations for the structural and conformational dynamics of a supercooled, unentangled polymer melt. We find semiquantitative agreement between simulation and theory, except for processes that occur on intermediate length scales between the compressibility plateau and the amorphous halo of the static structure factor. Our results suggest that the onset of slow relaxation in a glass-forming melt can be described in terms of monomer caging supplemented by chain connectivity. Furthermore, a unified atomistic description of glassy arrest and of conformational fluctuations that (asymptotically) follow the Rouse model emerges from our theory.
Collapse
Affiliation(s)
- Song-Ho Chong
- Institute for Molecular Science, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
16
|
De Gaetani L, Prampolini G, Tani A. Anomalous Diffusion and Cage Effects in the Isotropic Phase of a Liquid Crystal. J Phys Chem B 2007; 111:7473-7. [PMID: 17567066 DOI: 10.1021/jp0725127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The translational motion of 4-n-hexyl-4'-cyanobiphenyl (6CB) in its isotropic phase has been studied by atomistic molecular dynamics simulation from 280 to 330 K. The mean square displacement shows evidence of a subdiffusive dynamics, with a plateau that becomes very apparent at the lowest temperatures. A three-time self-intermediate scattering function reveals that this plateau is connected with a homogeneous dynamics that, at longer times, becomes heterogeneous and finally exponential. These features are shared by, for example, a high-density system of hard spheres, which supports the universal character of the translational dynamics of liquids in their supercooled condition. As predicted by the idealized version of the mode-coupling theory (MCT), the diffusion coefficient dependence upon temperature is well described by a power law, with a critical temperature very close to that obtained by experimental measurements on orientational relaxation. This agreement might indicate a complete freezing of both rotational and translational intradomain dynamics. The time-temperature superposition principle also holds. The shape of the cage that surrounds a 6CB molecule has been reconstructed, and this analysis suggests a preferential side-by-side arrangement of molecules, which locally tend to align their long axes even in the isotropic phase.
Collapse
Affiliation(s)
- Luca De Gaetani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, I-56126 Pisa, Italy.
| | | | | |
Collapse
|
17
|
Moreno AJ, Colmenero J. Relaxation scenarios in a mixture of large and small spheres: Dependence on the size disparity. J Chem Phys 2006; 125:164507. [PMID: 17092105 DOI: 10.1063/1.2361286] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a computational investigation on the slow dynamics of a mixture of large and small soft spheres. By varying the size disparity at a moderate fixed composition different relaxation scenarios are observed for the small particles. For small disparity density-density correlators exhibit moderate stretching. Only small quantitative differences are observed between dynamic features for large and small particles. On the contrary, large disparity induces a clear time scale separation between the large and small particles. Density-density correlators for the small particles become extremely stretched and display logarithmic relaxation by properly tuning the temperature or the wave vector. Self-correlators decay much faster than density-density correlators. For very large size disparity, a complete separation between self- and collective dynamics is observed for the small particles. Self-correlators decay to zero at temperatures where density-density correlations are frozen. The dynamic picture obtained by varying the size disparity resembles features associated with mode coupling transition lines of the types B and A at, respectively, small and very large size disparities. Both lines might merge, at some intermediate disparity, at a higher-order point, to which logarithmic relaxation would be associated. This picture resembles predictions of a recent mode coupling theory for fluids confined in matrices with interconnected voids [V. Krakoviack, Phys. Rev. Lett. 94, 065703 (2005)].
Collapse
Affiliation(s)
- Angel J Moreno
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain.
| | | |
Collapse
|
18
|
Bordat P, Lerbret A, Descamps M, Affouard F. Slow dynamics in glass-forming materials. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020600900329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Peter S, Meyer H, Baschnagel J. Thickness-dependent reduction of the glass-transition temperature in thin polymer films with a free surface. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/polb.20924] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Ghosh J, Faller R. A comparative molecular simulation study of the glass former ortho-terphenyl in bulk and freestanding films. J Chem Phys 2006; 125:44506. [PMID: 16942155 DOI: 10.1063/1.2210941] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We performed molecular dynamics simulations of the low-molecular weight organic glass former ortho-terphenyl in bulk and freestanding films. The main motivation is to provide molecular insight into the confinement effect without explicit interfaces. Based on earlier models of ortho-terphenyl we developed an atomistic model for bulk simulations. The model reproduces literature data both from simulations and experiments starting from specific volume and diffusivity to mean square displacement and radial distribution functions. After characterizing the bulk model we form freestanding films by the elongation and expansion method. These films give us the opportunity to study the dynamical heterogeneity near the glass transition through in-plane mobility and reorientation dynamics. We finally compare the model in bulk and under confinement. We found qualitatively a lower glass transition temperature for the freestanding film compared to the bulk.
Collapse
Affiliation(s)
- Jayeeta Ghosh
- Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616, USA
| | | |
Collapse
|
21
|
Moreno AJ, Chong SH, Kob W, Sciortino F. Dynamic arrest in a liquid of symmetric dumbbells: Reorientational hopping for small molecular elongations. J Chem Phys 2005; 123:204505. [PMID: 16351279 DOI: 10.1063/1.2085030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present extensive equilibrium and out-of-equilibrium molecular-dynamics simulations of a liquid of symmetric dumbbell molecules, for constant packing fraction, as a function of temperature and molecular elongation. We compute diffusion constants as well as odd and even orientational correlators. The notations odd and even refer to the parity of the order l of the corresponding Legendre l polynomial, evaluated for the orientation of the molecular axis relative to its initial position. Rotational degrees of freedom of order l are arrested if, in the long-time limit, the corresponding orientational l correlator does not decay to zero. It is found that for large elongations translational and rotational degrees of freedom freeze at the same temperature. For small elongations only the even rotational degrees of freedom remain coupled to translational motions and arrest at a finite common temperature. On the contrary, the odd rotational degrees of freedom remain ergodic at all investigated temperatures. Hence, in the translationally arrested state, each molecule remains trapped in the cage formed by its neighboring molecules, but is able to perform 180 degrees rotations, which lead to relaxation only for the odd orientational correlators. The temperature dependence of the characteristic time of these residual rotations is well described by an Arrhenius law. Finally, we discuss the evidence in favor of the presence of the type-A transition for the odd rotational degrees of freedom, as predicted by mode-coupling theory for small molecular elongations. This transition is distinct from the type-B transition, associated with the arrest of the translational and even rotational degrees of freedom for small elongations, and with all degrees of freedom for large elongations. Odd orientational correlators are computed for small elongations at very low temperatures in the translationally arrested state. The obtained results suggest that hopping events restore the ergodicity of the odd rotational degrees of freedom at temperatures far below the A transition.
Collapse
Affiliation(s)
- Angel J Moreno
- Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia (INFM)-Centri di Ricerca e Sviluppo (CRS)-Statistical Mechanics and Complexity (SMC), Universitá di Roma La Sapienza, Piazzale Aldo Moro 2, 00185 Rome, Italy.
| | | | | | | |
Collapse
|
22
|
Blieck J, Affouard F, Bordat P, Lerbret A, Descamps M. Molecular dynamics simulations of glycerol glass-forming liquid. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2005.05.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Affouard F, Cochin E, Danède F, Decressain R, Descamps M, Haeussler W. Onset of slow dynamics in difluorotetrachloroethane glassy crystal. J Chem Phys 2005; 123:084501. [PMID: 16164306 DOI: 10.1063/1.1990111] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Complementary neutron spin-echo and x-ray experiments and molecular-dynamics simulations have been performed on difluorotetrachloroethane (CFCl2-CFCl2) glassy crystal. Static, single-molecule reorientational dynamics and collective dynamics properties are investigated. Our results confirm the strong analogy between molecular liquids and plastic crystals. The orientational disorder is characterized at different temperatures and a change in the nature of rotational dynamics is observed. A careful check of the rotational diffusion model is performed using self-angular correlation functions Cl with high l values and compared to results obtained on molecular liquids composed of A-B dumbbells. Below the crossover temperature at which slow dynamics emerge, we show that some scaling predictions of the mode coupling theory hold and that alpha-relaxation times and nonergodicity parameters are controlled by the nontrivial static correlations.
Collapse
Affiliation(s)
- F Affouard
- Laboratoire de Dynamique et Structure des Matériaux Moléculaires, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8024, Université Lille 1, 59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | | | |
Collapse
|