1
|
El Zghir RK, Gabay NC, Robinson PA. Unified theory of alpha, mu, and tau rhythms via eigenmodes of brain activity. Front Comput Neurosci 2024; 18:1335130. [PMID: 39286332 PMCID: PMC11403587 DOI: 10.3389/fncom.2024.1335130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
A compact description of the frequency structure and topography of human alpha-band rhythms is obtained by use of the first four brain activity eigenmodes previously derived from corticothalamic neural field theory. Just two eigenmodes that overlap in frequency are found to reproduce the observed topography of the classical alpha rhythm for subjects with a single, occipitally concentrated alpha peak in their electroencephalograms. Alpha frequency splitting and relative amplitudes of double alpha peaks are explored analytically and numerically within this four-mode framework using eigenfunction expansion and perturbation methods. These effects are found to result primarily from the different eigenvalues and corticothalamic gains corresponding to the eigenmodes. Three modes with two non-overlapping frequencies suffice to reproduce the observed topography for subjects with a double alpha peak, where the appearance of a distinct second alpha peak requires an increase of the corticothalamic gain of higher eigenmodes relative to the first. Conversely, alpha blocking is inferred to be linked to a relatively small attention-dependent reduction of the gain of the relevant eigenmodes, whose effect is enhanced by the near-critical state of the brain and whose sign is consistent with inferences from neural field theory. The topographies and blocking of the mu and tau rhythms within the alpha-band are explained analogously via eigenmodes. Moreover, the observation of three rhythms in the alpha band is due to there being exactly three members of the first family of spatially nonuniform modes. These results thus provide a simple, unified description of alpha band rhythms and enable experimental observations of spectral structure and topography to be linked directly to theory and underlying physiology.
Collapse
Affiliation(s)
- Rawan Khalil El Zghir
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Natasha C Gabay
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
- Northern Sydney Cancer Center, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - P A Robinson
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Polyakov D, Robinson PA, Muller EJ, Shriki O. Recruiting neural field theory for data augmentation in a motor imagery brain-computer interface. Front Robot AI 2024; 11:1362735. [PMID: 38694882 PMCID: PMC11061403 DOI: 10.3389/frobt.2024.1362735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/20/2024] [Indexed: 05/04/2024] Open
Abstract
We introduce a novel approach to training data augmentation in brain-computer interfaces (BCIs) using neural field theory (NFT) applied to EEG data from motor imagery tasks. BCIs often suffer from limited accuracy due to a limited amount of training data. To address this, we leveraged a corticothalamic NFT model to generate artificial EEG time series as supplemental training data. We employed the BCI competition IV '2a' dataset to evaluate this augmentation technique. For each individual, we fitted the model to common spatial patterns of each motor imagery class, jittered the fitted parameters, and generated time series for data augmentation. Our method led to significant accuracy improvements of over 2% in classifying the "total power" feature, but not in the case of the "Higuchi fractal dimension" feature. This suggests that the fit NFT model may more favorably represent one feature than the other. These findings pave the way for further exploration of NFT-based data augmentation, highlighting the benefits of biophysically accurate artificial data.
Collapse
Affiliation(s)
- Daniel Polyakov
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Agricultural, Biological, Cognitive Robotics Initiative, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | | | - Eli J. Muller
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Agricultural, Biological, Cognitive Robotics Initiative, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
3
|
Babaie-Janvier T, Gabay NC, McInnes A, Robinson PA. Neural field theory of adaptive effects on auditory evoked responses and mismatch negativity in multifrequency stimulus sequences. Front Hum Neurosci 2024; 17:1282924. [PMID: 38234595 PMCID: PMC10791997 DOI: 10.3389/fnhum.2023.1282924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/27/2023] [Indexed: 01/19/2024] Open
Abstract
Physiologically based neural field theory (NFT) of the corticothalamic system, including adaptation, is used to calculate the responses evoked by trains of auditory stimuli that differ in frequency. In oddball paradigms, fully distinguishable frequencies lead to different standard (common stimulus) and deviant (rare stimulus) responses; the signal obtained by subtracting the standard response from the deviant is termed the mismatch negativity (MMN). In this analysis, deviant responses are found to correspond to unadapted cortex, whereas the part of auditory cortex that processes the standard stimuli adapts over several stimulus presentations until the final standard response form is achieved. No higher-order memory processes are invoked. In multifrequency experiments, the deviant response approaches the standard one as the deviant frequency approaches that of the standard and analytic criteria for this effect to be obtained. It is shown that these criteria can also be used to understand adaptation in random tone sequences. A method of probing MMNs and adaptation in random tone sequences is suggested to makes more use of such data.
Collapse
Affiliation(s)
- Tahereh Babaie-Janvier
- School of Physics, The University of Sydney, Sydney, NSW, Australia
- Center of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, Australia
| | - Natasha C. Gabay
- School of Physics, The University of Sydney, Sydney, NSW, Australia
- Center of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, Australia
| | | | - Peter A. Robinson
- School of Physics, The University of Sydney, Sydney, NSW, Australia
- Center of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Assadzadeh S, Annen J, Sanz L, Barra A, Bonin E, Thibaut A, Boly M, Laureys S, Gosseries O, Robinson PA. Method for quantifying arousal and consciousness in healthy states and severe brain injury via EEG-based measures of corticothalamic physiology. J Neurosci Methods 2023; 398:109958. [PMID: 37661056 DOI: 10.1016/j.jneumeth.2023.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/09/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Characterization of normal arousal states has been achieved by fitting predictions of corticothalamic neural field theory (NFT) to electroencephalographic (EEG) spectra to yield relevant physiological parameters. NEW METHOD A prior fitting method is extended to distinguish conscious and unconscious states in healthy and brain injured subjects by identifying additional parameters and clusters in parameter space. RESULTS Fits of NFT predictions to EEG spectra are used to estimate neurophysiological parameters in healthy and brain injured subjects. Spectra are used from healthy subjects in wake and sleep and from patients with unresponsive wakefulness syndrome, in a minimally conscious state (MCS), and emerged from MCS. Subjects cluster into three groups in parameter space: conscious healthy (wake and REM), sleep, and brain injured. These are distinguished by the difference X-Y between corticocortical (X) and corticothalamic (Y) feedbacks, and by mean neural response rates α and β to incoming spikes. X-Y tracks consciousness in healthy individuals, with smaller values in wake/REM than sleep, but cannot distinguish between brain injuries. Parameters α and β differentiate deep sleep from wake/REM and brain injury. COMPARISON WITH EXISTING METHODS Other methods typically rely on laborious clinical assessment, manual EEG scoring, or evaluation of measures like Φ from integrated information theory, for which no efficient method exists. In contrast, the present method can be automated on a personal computer. CONCLUSION The method provides a means to quantify consciousness and arousal in healthy and brain injured subjects, but does not distinguish subtypes of brain injury.
Collapse
Affiliation(s)
- S Assadzadeh
- School of Physics, The University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, The University of Sydney, NSW 2006, Australia
| | - J Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - L Sanz
- Coma Science Group, GIGA-Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - A Barra
- Coma Science Group, GIGA-Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - E Bonin
- Coma Science Group, GIGA-Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - A Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - M Boly
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - S Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium; Joint International Research Unit on Consciousness, CERVO Brain Research Centre, U Laval, Canada; International Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - O Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - P A Robinson
- School of Physics, The University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Olejarczyk E, Sobieszek A. Commentary: Is So-Called "Split Alpha" in EEG Spectral Analysis a Result of Methodological and Interpretation Errors? Front Neurosci 2021; 15:726912. [PMID: 34630016 PMCID: PMC8497753 DOI: 10.3389/fnins.2021.726912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Elzbieta Olejarczyk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksander Sobieszek
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Robinson PA, Gabay NC, Babaie-Janvier T. Neural Field Theory of Evoked Response Sequences and Mismatch Negativity With Adaptation. Front Hum Neurosci 2021; 15:655505. [PMID: 34483860 PMCID: PMC8415526 DOI: 10.3389/fnhum.2021.655505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/20/2021] [Indexed: 12/02/2022] Open
Abstract
Physiologically based neural field theory of the corticothalamic system is used to calculate the responses evoked by trains of auditory stimuli that correspond to different cortical locations via the tonotopic map. The results are shown to account for standard and deviant evoked responses to frequent and rare stimuli, respectively, in the auditory oddball paradigms widely used in human cognitive studies, and the so-called mismatch negativity between them. It also reproduces a wide range of other effects and variants, including the mechanism by which a change in standard responses relative to deviants can develop through adaptation, different responses when two deviants are presented in a row or a standard is presented after two deviants, relaxation of standard responses back to deviant form after a stimulus-free period, and more complex sequences. Some cases are identified in which adaptation does not account for the whole difference between standard and deviant responses. The results thus provide a systematic means to determine how much of the response is due to adaptation in the system comprising the primary auditory cortex and medial geniculate nucleus, and how much requires involvement of higher-level processing.
Collapse
Affiliation(s)
- Peter A Robinson
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Natasha C Gabay
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Tara Babaie-Janvier
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Glomb K, Cabral J, Cattani A, Mazzoni A, Raj A, Franceschiello B. Computational Models in Electroencephalography. Brain Topogr 2021; 35:142-161. [PMID: 33779888 PMCID: PMC8813814 DOI: 10.1007/s10548-021-00828-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
Computational models lie at the intersection of basic neuroscience and healthcare applications because they allow researchers to test hypotheses in silico and predict the outcome of experiments and interactions that are very hard to test in reality. Yet, what is meant by “computational model” is understood in many different ways by researchers in different fields of neuroscience and psychology, hindering communication and collaboration. In this review, we point out the state of the art of computational modeling in Electroencephalography (EEG) and outline how these models can be used to integrate findings from electrophysiology, network-level models, and behavior. On the one hand, computational models serve to investigate the mechanisms that generate brain activity, for example measured with EEG, such as the transient emergence of oscillations at different frequency bands and/or with different spatial topographies. On the other hand, computational models serve to design experiments and test hypotheses in silico. The final purpose of computational models of EEG is to obtain a comprehensive understanding of the mechanisms that underlie the EEG signal. This is crucial for an accurate interpretation of EEG measurements that may ultimately serve in the development of novel clinical applications.
Collapse
Affiliation(s)
- Katharina Glomb
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
| | - Anna Cattani
- Department of Psychiatry, University of Wisconsin-Madison, Madison, USA.,Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ashish Raj
- School of Medicine, UCSF, San Francisco, USA
| | - Benedetta Franceschiello
- Department of Ophthalmology, Hopital Ophthalmic Jules Gonin, FAA, Lausanne, Switzerland.,CIBM Centre for Biomedical Imaging, EEG Section CHUV-UNIL, Lausanne, Switzerland.,Laboratory for Investigative Neurophysiology, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| |
Collapse
|
8
|
Griffiths JD, McIntosh AR, Lefebvre J. A Connectome-Based, Corticothalamic Model of State- and Stimulation-Dependent Modulation of Rhythmic Neural Activity and Connectivity. Front Comput Neurosci 2020; 14:575143. [PMID: 33408622 PMCID: PMC7779529 DOI: 10.3389/fncom.2020.575143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Rhythmic activity in the brain fluctuates with behaviour and cognitive state, through a combination of coexisting and interacting frequencies. At large spatial scales such as those studied in human M/EEG, measured oscillatory dynamics are believed to arise primarily from a combination of cortical (intracolumnar) and corticothalamic rhythmogenic mechanisms. Whilst considerable progress has been made in characterizing these two types of neural circuit separately, relatively little work has been done that attempts to unify them into a single consistent picture. This is the aim of the present paper. We present and examine a whole-brain, connectome-based neural mass model with detailed long-range cortico-cortical connectivity and strong, recurrent corticothalamic circuitry. This system reproduces a variety of known features of human M/EEG recordings, including spectral peaks at canonical frequencies, and functional connectivity structure that is shaped by the underlying anatomical connectivity. Importantly, our model is able to capture state- (e.g., idling/active) dependent fluctuations in oscillatory activity and the coexistence of multiple oscillatory phenomena, as well as frequency-specific modulation of functional connectivity. We find that increasing the level of sensory drive to the thalamus triggers a suppression of the dominant low frequency rhythms generated by corticothalamic loops, and subsequent disinhibition of higher frequency endogenous rhythmic behaviour of intracolumnar microcircuits. These combine to yield simultaneous decreases in lower frequency and increases in higher frequency components of the M/EEG power spectrum during states of high sensory or cognitive drive. Building on this, we also explored the effect of pulsatile brain stimulation on ongoing oscillatory activity, and evaluated the impact of coexistent frequencies and state-dependent fluctuations on the response of cortical networks. Our results provide new insight into the role played by cortical and corticothalamic circuits in shaping intrinsic brain rhythms, and suggest new directions for brain stimulation therapies aimed at state-and frequency-specific control of oscillatory brain activity.
Collapse
Affiliation(s)
- John D. Griffiths
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Anthony Randal McIntosh
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Jeremie Lefebvre
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Mathematics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Zalewska E. Is So Called "Split Alpha" in EEG Spectral Analysis a Result of Methodological and Interpretation Errors? Front Neurosci 2020; 14:608453. [PMID: 33324157 PMCID: PMC7726354 DOI: 10.3389/fnins.2020.608453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
This paper attempts to explain some methodological issues regarding EEG signal analysis which might lead to misinterpretation and therefore to unsubstantiated conclusions. The so called “split-alpha,” a “new phenomenon” in EEG spectral analysis described lately in few papers is such a case. We have shown that spectrum feature presented as a “split alpha” can be the result of applying improper means of analysis of the spectrum of the EEG signal that did not take into account the significant properties of the applied Fast Fourier Transform (FFT) method. Analysis of the shortcomings of the FFT method applied to EEG signal such as limited duration of analyzed signal, dependence of frequency resolution on time window duration, influence of window duration and shape, overlapping and spectral leakage was performed. Our analyses of EEG data as well as simulations indicate that double alpha spectra called as “split alpha” can appear, as spurious peaks, for short signal window when the EEG signal being studied shows multiple frequencies and frequency bands. These peaks have no relation to any frequencies of the signal and are an effect of spectrum leakage. Our paper is intended to explain the reasons underlying a spectrum pattern called as a “split alpha” and give some practical indications for using spectral analysis of EEG signal that might be useful for readers and allow to avoid EEG spectrum misinterpretation in further studies and publications as well as in clinical practice.
Collapse
Affiliation(s)
- Ewa Zalewska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Babaie-Janvier T, Robinson PA. Neural Field Theory of Evoked Response Potentials With Attentional Gain Dynamics. Front Hum Neurosci 2020; 14:293. [PMID: 32848668 PMCID: PMC7426978 DOI: 10.3389/fnhum.2020.00293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022] Open
Abstract
A generalized neural field model of large-scale activity in the corticothalamic system is used to predict standard evoked potentials. This model embodies local feedbacks that modulate the gains of neural activity as part of the response to incoming stimuli and thus enables both activity changes and effective connectivity changes to be calculated as parts of a generalized evoked response, and their relative contributions to be determined. The results show that incorporation of gain modulations enables a compact and physically justifiable description of the differences in gain between background-EEG and standard-ERP conditions, with the latter able to be initiated from the background state, rather than requiring distinct parameters as in earlier work. In particular, top-down gains are found to be reduced during an ERP, consistent with recent theoretical suggestions that the role of internal models is diminished in favor of external inputs when the latter change suddenly. The static-gain and modulated-gain system transfer functions are analyzed via control theory in terms of system resonances that were recently shown to implement data filtering whose gain adjustments can be interpreted as attention. These filters are shown to govern early and late features in standard evoked responses and their gain parameters are shown to be dynamically adjusted in a way that implements a form of attention. The results show that dynamically modulated resonant filters responsible for the low-frequency oscillations in an evoked potential response have different parameters than those responsible for low-frequency resting EEG responses, while both responses share similar mid- and high-frequency resonant filters. These results provide a biophysical mechanism by which oscillatory activity in the theta, alpha, and beta frequency ranges of an evoked response are modulated as reflections of attention; notably theta is enhanced and alpha suppressed during the latter parts of the ERP. Furthermore, the model enables the part of the ERP response induced by gain modulations to be estimated and interpreted in terms of attention.
Collapse
Affiliation(s)
- Tara Babaie-Janvier
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Peter A Robinson
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Daini D, Ceccarelli G, Cataldo E, Jirsa V. Spherical-harmonics mode decomposition of neural field equations. Phys Rev E 2020; 101:012202. [PMID: 32069532 DOI: 10.1103/physreve.101.012202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Large-scale neural networks can be described in the spatial continuous limit by neural field equations. For large-scale brain networks, the connectivity is typically translationally variant and imposes a large computational burden upon simulations. To reduce this burden, we take a semiquantitative approach and study the dynamics of neural fields described by a delayed integrodifferential equation. We decompose the connectivity into spatially variant and invariant contributions, which typically comprise the short- and long-range fiber systems, respectively. The neural fields are mapped on the two-dimensional spherical surface, which is choice consistent with routine mappings of cortical surfaces. Then, we perform mathematically a mode decomposition of the neural field equation into spherical harmonic basis functions. A spatial truncation of the leading orders at low wave number is consistent with the spatially coherent pattern formation of large-scale patterns observed in simulations and empirical brain imaging data and leads to a low-dimensional representation of the dynamics of the neural fields, bearing promise for an acceleration of the numerical simulations by orders of magnitude.
Collapse
Affiliation(s)
- Daniele Daini
- UMR Inserm 1106, Aix-Marseille Université, Faculté de Médecine, 27, Boulevard Jean Moulin, 13005 Marseille, France
| | - Giacomo Ceccarelli
- Physics Department, Largo B. Pontecorvo 3, University of Pisa, 56127 Pisa, Italy
| | - Enrico Cataldo
- Physics Department, Largo B. Pontecorvo 3, University of Pisa, 56127 Pisa, Italy
| | - Viktor Jirsa
- UMR Inserm 1106, Aix-Marseille Université, Faculté de Médecine, 27, Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
12
|
Babaie-Janvier T, Robinson PA. Neural Field Theory of Corticothalamic Attention With Control System Analysis. Front Neurosci 2019; 13:1240. [PMID: 31849576 PMCID: PMC6892952 DOI: 10.3389/fnins.2019.01240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/04/2019] [Indexed: 11/25/2022] Open
Abstract
Neural field theory is used to analyze attention by extending an existing model of the large-scale activity in the corticothalamic system to incorporate local feedbacks that modulate the gains of neural connectivity as part of the response to incoming stimuli. Treatment of both activity changes and connectivity changes as part of a generalized response enables generalized linear transfer functions of the combined response to be derived. These are then analyzed and interpreted via control theory in terms of stimulus-driven changes in system resonances that were recently shown to implement data filtering and prediction of the inputs. Using simple visual stimuli as a test case, it is shown that the gain response can implement attention by evaluating two main features of the stimuli: the magnitude and the rate of change, by increasing the weight placed on the rate of change in response to sudden changes, while reducing the contribution of stimuli value in tandem. These changes of filter parameters are shown to improve the prediction of the upcoming stimuli based on its recent time course. This outcome is analogous to controller-parameter tuning for performance enhancement in engineering control theory.
Collapse
Affiliation(s)
- Tara Babaie-Janvier
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Peter A Robinson
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Assadzadeh S, Robinson PA. Necessity of the sleep-wake cycle for synaptic homeostasis: system-level analysis of plasticity in the corticothalamic system. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171952. [PMID: 30473798 PMCID: PMC6227995 DOI: 10.1098/rsos.171952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 09/13/2018] [Indexed: 06/09/2023]
Abstract
Neural field theory is used to study the system-level effects of plasticity in the corticothalamic system, where arousal states are represented parametrically by the connection strengths of the system, among other physiologically based parameters. It is found that the plasticity dynamics have no fixed points or closed cycles in the parameter space of the connection strengths, but parameter subregions exist where flows have opposite signs. Remarkably, these subregions coincide with previously identified regions that correspond to wake and slow-wave sleep, thus demonstrating state dependence of the sign of synaptic modification. We then show that a closed cycle in the parameter space is possible when the plasticity dynamics are driven by the ascending arousal system, which cycles the brain between sleep and wake to complete a closed loop that includes arcs through the opposite-flow subregions. Thus, it is concluded that both wake and sleep are necessary, and together are able to stabilize connection weights in the brain over the daily cycle, thereby providing quantitative realization of the synaptic homeostasis hypothesis.
Collapse
Affiliation(s)
- S. Assadzadeh
- School of Physics, The University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, The University of Sydney, New South Wales 2006, Australia
| | - P. A. Robinson
- School of Physics, The University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
14
|
Zobaer MS, Robinson PA, Kerr CC. Physiology-based ERPs in normal and abnormal states. BIOLOGICAL CYBERNETICS 2018; 112:465-482. [PMID: 30019237 DOI: 10.1007/s00422-018-0766-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
Evoked response potentials (ERPs) and other transients are modeled as impulse responses using physiology-based neural field theory (NFT) of the corticothalamic system of neural activity in the human brain that incorporates synaptic and dendritic dynamics, firing response, axonal propagation, and corticocortical and corticothalamic pathways. The properties of model-predicted ERPs are explored throughout the stability zone of the corticothalamic system, and predicted time series and wavelet spectra are also analyzed. This provides a unified treatment of predicted ERPs for both normal and abnormal states within the brain's stability zone, including likely parameters to represent abnormal states of reduced arousal.
Collapse
Affiliation(s)
- M S Zobaer
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia.
- Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2006, Australia.
- Center for Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, NSW, 2037, Australia.
- Department of Physics, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh.
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, NSW, 2037, Australia
| | - C C Kerr
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2006, Australia
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, USA
| |
Collapse
|
15
|
Babaie Janvier T, Robinson PA. Neural Field Theory of Corticothalamic Prediction With Control Systems Analysis. Front Hum Neurosci 2018; 12:334. [PMID: 30250428 PMCID: PMC6139319 DOI: 10.3389/fnhum.2018.00334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
Neural field theory is used to model and analyze realistic corticothalamic responses to simple visual stimuli. This yields system transfer functions that embody key features in common with those of engineering control systems, which enables interpretation of brain dynamics in terms of data filters. In particular, these features assist in finding internal signals that represent input stimuli and their changes, which are exactly the types of quantities used in control systems to enable prediction of future input signals, and adjustment of gains which is argued to be the analog of attention in control theory. Corticothalamic dynamics are shown to be analogous to the classical proportional-integral-derivative (PID) filters that are widely used in engineering.
Collapse
Affiliation(s)
- Tahereh Babaie Janvier
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Peter A Robinson
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Sanz-Leon P, Robinson PA, Knock SA, Drysdale PM, Abeysuriya RG, Fung FK, Rennie CJ, Zhao X. NFTsim: Theory and Simulation of Multiscale Neural Field Dynamics. PLoS Comput Biol 2018; 14:e1006387. [PMID: 30133448 PMCID: PMC6122812 DOI: 10.1371/journal.pcbi.1006387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/04/2018] [Accepted: 07/22/2018] [Indexed: 01/02/2023] Open
Abstract
A user ready, portable, documented software package, NFTsim, is presented to facilitate numerical simulations of a wide range of brain systems using continuum neural field modeling. NFTsim enables users to simulate key aspects of brain activity at multiple scales. At the microscopic scale, it incorporates characteristics of local interactions between cells, neurotransmitter effects, synaptodendritic delays and feedbacks. At the mesoscopic scale, it incorporates information about medium to large scale axonal ranges of fibers, which are essential to model dissipative wave transmission and to produce synchronous oscillations and associated cross-correlation patterns as observed in local field potential recordings of active tissue. At the scale of the whole brain, NFTsim allows for the inclusion of long range pathways, such as thalamocortical projections, when generating macroscopic activity fields. The multiscale nature of the neural activity produced by NFTsim has the potential to enable the modeling of resulting quantities measurable via various neuroimaging techniques. In this work, we give a comprehensive description of the design and implementation of the software. Due to its modularity and flexibility, NFTsim enables the systematic study of an unlimited number of neural systems with multiple neural populations under a unified framework and allows for direct comparison with analytic and experimental predictions. The code is written in C++ and bundled with Matlab routines for a rapid quantitative analysis and visualization of the outputs. The output of NFTsim is stored in plain text file enabling users to select from a broad range of tools for offline analysis. This software enables a wide and convenient use of powerful physiologically-based neural field approaches to brain modeling. NFTsim is distributed under the Apache 2.0 license.
Collapse
Affiliation(s)
- Paula Sanz-Leon
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
| | - Peter A. Robinson
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
| | - Stuart A. Knock
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
| | | | - Romesh G. Abeysuriya
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Felix K. Fung
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
- Downstate Medical Center, State University of New York, Brooklyn, New York, United States of America
| | | | - Xuelong Zhao
- School of Physics, University of Sydney, Sydney, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, Australia
| |
Collapse
|
17
|
Deeba F, Sanz-Leon P, Robinson PA. Dependence of absence seizure dynamics on physiological parameter evolution. J Theor Biol 2018; 454:11-21. [PMID: 29807025 DOI: 10.1016/j.jtbi.2018.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/30/2022]
Abstract
A neural field model of the corticothalamic system is applied to investigate the temporal and spectral characteristics of absence seizures in the presence of a temporally varying connection strength between the cerebral cortex and thalamus. Increasing connection strength drives the system into an absence seizure-like state once a threshold is passed and a supercritical Hopf bifurcation occurs. The dynamics and spectral characteristics of the resulting model seizures are explored as functions of maximum connection strength, time above threshold, and the rate at which the connection strength increases (ramp rate). Our results enable spectral and temporal characteristics of seizures to be related to changes in the underlying physiological evolution of connections via nonlinear dynamics and neural field theory. Spectral analysis reveals that the power of the harmonics and the duration of the oscillations increase as the maximum connection strength and the time above threshold increase. It is also found that the time to reach the stable limit-cycle seizure oscillation from the instability threshold decreases with the square root of the ramp rate.
Collapse
Affiliation(s)
- F Deeba
- School of Physics, University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia.
| | - Paula Sanz-Leon
- School of Physics, University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Mukta KN, MacLaurin JN, Robinson PA. Theory of corticothalamic brain activity in a spherical geometry: Spectra, coherence, and correlation. Phys Rev E 2017; 96:052410. [PMID: 29347754 DOI: 10.1103/physreve.96.052410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Indexed: 11/07/2022]
Abstract
Corticothalamic neural field theory is applied to a spherical geometry to better model neural activity in the human brain and is also compared with planar approximations. The frequency power spectrum, correlation, and coherence functions are computed analytically and numerically. The effects of cortical boundary conditions and resulting modal aspects of spherical corticothalamic dynamics are explored, showing that the results of spherical and finite planar geometries converge to those for the infinite planar geometry in the limit of large brain size. Estimates are made of the point at which modal series can be truncated and it is found that for physiologically plausible parameters only the lowest few spatial eigenmodes are needed for an accurate representation of macroscopic brain activity. A difference between the geometries is that there is a low-frequency 1/f spectrum in the infinite planar geometry, whereas in the spherical geometry it is 1/f^{2}. Another difference is that the alpha peak in the spherical geometry is sharper and stronger than in the planar geometry. Cortical modal effects can lead to a double alpha peak structure in the power spectrum, although the main determinant of the alpha peak is corticothalamic feedback. In the spherical geometry, the cross spectrum between two points is found to only depend on their relative distance apart. At small spatial separations the low-frequency cross spectrum is stronger than for an infinite planar geometry and the alpha peak is sharper and stronger due to the partitioning of the energy into discrete modes. In the spherical geometry, the coherence function between points decays monotonically as their separation increases at a fixed frequency, but persists further at resonant frequencies. The correlation between two points is found to be positive, regardless of the time lag and spatial separation, but decays monotonically as the separation increases at fixed time lag. At fixed distance the correlation has peaks at multiples of the period of the dominant frequency of system activity.
Collapse
Affiliation(s)
- K N Mukta
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - J N MacLaurin
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
19
|
Olejarczyk E, Bogucki P, Sobieszek A. The EEG Split Alpha Peak: Phenomenological Origins and Methodological Aspects of Detection and Evaluation. Front Neurosci 2017; 11:506. [PMID: 28955192 PMCID: PMC5601034 DOI: 10.3389/fnins.2017.00506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/28/2017] [Indexed: 11/13/2022] Open
Abstract
Electroencephalographic (EEG) patterns were analyzed in a group of ambulatory patients who ranged in age and sex using spectral analysis as well as Directed Transfer Function, a method used to evaluate functional brain connectivity. We tested the impact of window size and choice of reference electrode on the identification of two or more peaks with close frequencies in the spectral power distribution, so called "split alpha." Together with the connectivity analysis, examination of spatiotemporal maps showing the distribution of amplitudes of EEG patterns allowed for better explanation of the mechanisms underlying the generation of split alpha peaks. It was demonstrated that the split alpha spectrum can be generated by two or more independent and interconnected alpha wave generators located in different regions of the cerebral cortex, but not necessarily in the occipital cortex. We also demonstrated the importance of appropriate reference electrode choice during signal recording. In addition, results obtained using the original data were compared with results obtained using re-referenced data, using average reference electrode and reference electrode standardization techniques.
Collapse
Affiliation(s)
- Elzbieta Olejarczyk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of SciencesWarsaw, Poland
| | - Piotr Bogucki
- Department of Neurology and Epileptology, Medical Center for Postgraduate EducationWarsaw, Poland
| | - Aleksander Sobieszek
- Department of Neurology and Epileptology, Medical Center for Postgraduate EducationWarsaw, Poland
| |
Collapse
|
20
|
Sanz-Leon P, Robinson PA. Multistability in the corticothalamic system. J Theor Biol 2017; 432:141-156. [PMID: 28830686 DOI: 10.1016/j.jtbi.2017.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/26/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022]
Abstract
Neural field theory of the corticothalamic system is used to analyze the properties of its steady-state solutions, including their linear stability, in the parameter space of synaptic couplings for physiological parameter ranges representing normal arousal waking states in adult humans. The independent connections of the corticothalamic model define an eight-dimensional parameter space, while specific combinations of these connections parameterize intracortical, corticothalamic, and intrathalamic loops. Multistable regions are systematically identified and the existence of up to five steady-state solutions is confirmed, up to three of which are linearly stable. A key determinant for the existence of five steady states is found to be the number of nonzero connections. This finding had not been previously proposed as the determining factor of high multiplicities of multistability in mesoscopic models of the brain. In the corticothalamic model presented here, multistability occurs when the intrathalamic loop is present (i.e., the reticular nucleus inhibits the relay nuclei), and when the net synaptic effect of the intracortical loop is inhibitory. The signature of these additional waking states is an overall increased level of thalamic activity. It is argued that the additional steady states found may represent hyperarousal states which occur when the corticothalamic projections do not attenuate the activity of the cortex.
Collapse
Affiliation(s)
- Paula Sanz-Leon
- School of Physics, University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia.
| | - P A Robinson
- School of Physics, University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
Zobaer MS, Anderson RM, Kerr CC, Robinson PA, Wong KKH, D'Rozario AL. K-complexes, spindles, and ERPs as impulse responses: unification via neural field theory. BIOLOGICAL CYBERNETICS 2017; 111:149-164. [PMID: 28251306 DOI: 10.1007/s00422-017-0713-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
To interrelate K-complexes, spindles, evoked response potentials (ERPs), and spontaneous electroencephalography (EEG) using neural field theory (NFT), physiology-based NFT of the corticothalamic system is used to model cortical excitatory and inhibitory populations and thalamic relay and reticular nuclei. The impulse response function of the model is used to predict the responses to impulses, which are compared with transient waveforms in sleep studies. Fits to empirical data then allow underlying brain physiology to be inferred and compared with other waves. Spontaneous K-complexes, spindles, and other transient waveforms can be reproduced using NFT by treating them as evoked responses to impulsive stimuli with brain parameters appropriate to spontaneous EEG in sleep stage 2. Using this approach, spontaneous K-complexes and sleep spindles can be analyzed using the same single theory as previously been used to account for waking ERPs and other EEG phenomena. As a result, NFT can explain a wide variety of transient waveforms that have only been phenomenologically classified to date. This enables noninvasive fitting to be used to infer underlying physiological parameters. This physiology-based model reproduces the time series of different transient EEG waveforms; it has previously reproduced experimental EEG spectra, and waking ERPs, and many other observations, thereby unifying transient sleep waveforms with these phenomena.
Collapse
Affiliation(s)
- M S Zobaer
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia.
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, 2006, Australia.
- Center for Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, NSW, 2037, Australia.
- Department of Physics, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh.
| | - R M Anderson
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - C C Kerr
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, USA
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, 2006, Australia
- Center for Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, NSW, 2037, Australia
| | - K K H Wong
- CIRUS, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
- Respiratory and Sleep Disorders Department, Royal Prince Alfred Hospital and Sydney Local Health District, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - A L D'Rozario
- CIRUS, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
- Respiratory and Sleep Disorders Department, Royal Prince Alfred Hospital and Sydney Local Health District, Sydney, NSW, Australia
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Speed hysteresis and noise shaping of traveling fronts in neural fields: role of local circuitry and nonlocal connectivity. Sci Rep 2017; 7:39611. [PMID: 28045036 PMCID: PMC5206719 DOI: 10.1038/srep39611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 11/18/2016] [Indexed: 01/27/2023] Open
Abstract
Neural field models are powerful tools to investigate the richness of spatiotemporal activity patterns like waves and bumps, emerging from the cerebral cortex. Understanding how spontaneous and evoked activity is related to the structure of underlying networks is of central interest to unfold how information is processed by these systems. Here we focus on the interplay between local properties like input-output gain function and recurrent synaptic self-excitation of cortical modules, and nonlocal intermodular synaptic couplings yielding to define a multiscale neural field. In this framework, we work out analytic expressions for the wave speed and the stochastic diffusion of propagating fronts uncovering the existence of an optimal balance between local and nonlocal connectivity which minimizes the fluctuations of the activation front propagation. Incorporating an activity-dependent adaptation of local excitability further highlights the independent role that local and nonlocal connectivity play in modulating the speed of propagation of the activation and silencing wavefronts, respectively. Inhomogeneities in space of local excitability give raise to a novel hysteresis phenomenon such that the speed of waves traveling in opposite directions display different velocities in the same location. Taken together these results provide insights on the multiscale organization of brain slow-waves measured during deep sleep and anesthesia.
Collapse
|
23
|
Abeysuriya RG, Robinson PA. Real-time automated EEG tracking of brain states using neural field theory. J Neurosci Methods 2015; 258:28-45. [PMID: 26523766 DOI: 10.1016/j.jneumeth.2015.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 12/01/2022]
Abstract
A real-time fitting system is developed and used to fit the predictions of an established physiologically-based neural field model to electroencephalographic spectra, yielding a trajectory in a physiological parameter space that parametrizes intracortical, intrathalamic, and corticothalamic feedbacks as the arousal state evolves continuously over time. This avoids traditional sleep/wake staging (e.g., using Rechtschaffen-Kales stages), which is fundamentally limited because it forces classification of continuous dynamics into a few discrete categories that are neither physiologically informative nor individualized. The classification is also subject to substantial interobserver disagreement because traditional staging relies in part on subjective evaluations. The fitting routine objectively and robustly tracks arousal parameters over the course of a full night of sleep, and runs in real-time on a desktop computer. The system developed here supersedes discrete staging systems by representing arousal states in terms of physiology, and provides an objective measure of arousal state which solves the problem of interobserver disagreement. Discrete stages from traditional schemes can be expressed in terms of model parameters for backward compatibility with prior studies.
Collapse
Affiliation(s)
- R G Abeysuriya
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia.
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
24
|
Physiologically based arousal state estimation and dynamics. J Neurosci Methods 2015; 253:55-69. [PMID: 26072247 DOI: 10.1016/j.jneumeth.2015.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/13/2015] [Accepted: 06/03/2015] [Indexed: 11/21/2022]
Abstract
A neural field model of the brain is used to represent brain states using physiologically based parameters rather than arbitrary, discrete sleep stages. Each brain state is represented as a point in a physiologically parametrized space. Over time, changes in brain state cause these points to trace continuous trajectories, unlike the artificial discrete jumps in sleep stage that occur with traditional sleep staging. The discrete Rechtschaffen and Kales sleep stages are associated with regions in the physiological parameter space based on their electroencephalographic features, which enables interpretation of traditional sleep stages in terms of physiological trajectories. Wake states are found to be associated with strong positive corticothalamic feedback compared to sleep. The existence of physiologically valid trajectories between brain states in the model is demonstrated. Actual trajectories for an individual can be determined by fitting the model using EEG alone, and enable analysis of the physiological differences between subjects.
Collapse
|
25
|
Saggar M, Zanesco AP, King BG, Bridwell DA, MacLean KA, Aichele SR, Jacobs TL, Wallace BA, Saron CD, Miikkulainen R. Mean-field thalamocortical modeling of longitudinal EEG acquired during intensive meditation training. Neuroimage 2015; 114:88-104. [PMID: 25862265 DOI: 10.1016/j.neuroimage.2015.03.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/10/2014] [Accepted: 03/27/2015] [Indexed: 12/18/2022] Open
Abstract
Meditation training has been shown to enhance attention and improve emotion regulation. However, the brain processes associated with such training are poorly understood and a computational modeling framework is lacking. Modeling approaches that can realistically simulate neurophysiological data while conforming to basic anatomical and physiological constraints can provide a unique opportunity to generate concrete and testable hypotheses about the mechanisms supporting complex cognitive tasks such as meditation. Here we applied the mean-field computational modeling approach using the scalp-recorded electroencephalogram (EEG) collected at three assessment points from meditating participants during two separate 3-month-long shamatha meditation retreats. We modeled cortical, corticothalamic, and intrathalamic interactions to generate a simulation of EEG signals recorded across the scalp. We also present two novel extensions to the mean-field approach that allow for: (a) non-parametric analysis of changes in model parameter values across all channels and assessments; and (b) examination of variation in modeled thalamic reticular nucleus (TRN) connectivity over the retreat period. After successfully fitting whole-brain EEG data across three assessment points within each retreat, two model parameters were found to replicably change across both meditation retreats. First, after training, we observed an increased temporal delay between modeled cortical and thalamic cells. This increase provides a putative neural mechanism for a previously observed reduction in individual alpha frequency in these same participants. Second, we found decreased inhibitory connection strength between the TRN and secondary relay nuclei (SRN) of the modeled thalamus after training. This reduction in inhibitory strength was found to be associated with increased dynamical stability of the model. Altogether, this paper presents the first computational approach, taking core aspects of physiology and anatomy into account, to formally model brain processes associated with intensive meditation training. The observed changes in model parameters inform theoretical accounts of attention training through meditation, and may motivate future study on the use of meditation in a variety of clinical populations.
Collapse
Affiliation(s)
- Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Department of Computer Science, University of Texas at Austin, TX, USA.
| | - Anthony P Zanesco
- Department of Psychology, University of California, Davis, CA, USA; Center for Mind and Brain, University of California, Davis, CA, USA
| | - Brandon G King
- Department of Psychology, University of California, Davis, CA, USA; Center for Mind and Brain, University of California, Davis, CA, USA
| | | | - Katherine A MacLean
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen R Aichele
- Department of Psychology, University of California, Davis, CA, USA; Center for Mind and Brain, University of California, Davis, CA, USA
| | - Tonya L Jacobs
- Center for Mind and Brain, University of California, Davis, CA, USA
| | - B Alan Wallace
- Santa Barbara Institute for Consciousness Studies, Santa Barbara, CA, USA
| | - Clifford D Saron
- Center for Mind and Brain, University of California, Davis, CA, USA; The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, USA
| | | |
Collapse
|
26
|
Abeysuriya RG, Rennie CJ, Robinson PA, Kim JW. Experimental observation of a theoretically predicted nonlinear sleep spindle harmonic in human EEG. Clin Neurophysiol 2014; 125:2016-23. [PMID: 24583091 DOI: 10.1016/j.clinph.2014.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate the properties of a sleep spindle harmonic oscillation previously predicted by a theoretical neural field model of the brain. METHODS Spindle oscillations were extracted from EEG data from nine subjects using an automated algorithm. The power and frequency of the spindle oscillation and the harmonic oscillation were compared across subjects. The bicoherence of the EEG was calculated to identify nonlinear coupling. RESULTS All subjects displayed a spindle harmonic at almost exactly twice the frequency of the spindle. The power of the harmonic scaled nonlinearly with that of the spindle peak, consistent with model predictions. Bicoherence was observed at the spindle frequency, confirming the nonlinear origin of the harmonic oscillation. CONCLUSIONS The properties of the sleep spindle harmonic were consistent with the theoretical modeling of the sleep spindle harmonic as a nonlinear phenomenon. SIGNIFICANCE Most models of sleep spindle generation are unable to produce a spindle harmonic oscillation, so the observation and theoretical explanation of the harmonic is a significant step in understanding the mechanisms of sleep spindle generation. Unlike seizures, sleep spindles produce nonlinear effects that can be observed in healthy controls, and unlike the alpha oscillation, there is no linearly generated harmonic that can obscure nonlinear effects. This makes the spindle harmonic a good candidate for future investigation of nonlinearity in the brain.
Collapse
Affiliation(s)
- R G Abeysuriya
- School of Physics, University of Sydney, New South Wales 2006, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia; Center for Integrated Research and Understanding of Sleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia.
| | - C J Rennie
- School of Physics, University of Sydney, New South Wales 2006, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia; Center for Integrated Research and Understanding of Sleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia
| | - J W Kim
- School of Physics, University of Sydney, New South Wales 2006, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia; Center for Integrated Research and Understanding of Sleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia
| |
Collapse
|
27
|
Abeysuriya RG, Rennie CJ, Robinson PA. Prediction and verification of nonlinear sleep spindle harmonic oscillations. J Theor Biol 2013; 344:70-7. [PMID: 24291492 DOI: 10.1016/j.jtbi.2013.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/12/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
This paper examines nonlinear effects in a neural field model of the corticothalamic system to predict the EEG power spectrum of sleep spindles. Nonlinearity in the thalamic relay nuclei gives rise to a spindle harmonic visible in the cortical EEG. By deriving an analytic expression for nonlinear spectrum, the power in the spindle harmonic is predicted to scale quadratically with the power in the spindle oscillation. By isolating sleep spindles from background sleep in experimental EEG data, the spindle harmonic is directly observed.
Collapse
Affiliation(s)
- R G Abeysuriya
- School of Physics, University of Sydney, New South Wales 2006, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia; Center for Integrated Research and Understanding of Sleep, Glebe, New South Wales 2037, Australia.
| | - C J Rennie
- School of Physics, University of Sydney, New South Wales 2006, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia; Center for Integrated Research and Understanding of Sleep, Glebe, New South Wales 2037, Australia
| |
Collapse
|
28
|
Naruse Y, Takiyama K, Okada M, Murata T. Inference in alpha rhythm phase and amplitude modeled on Markov random field using belief propagation from electroencephalograms. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:011912. [PMID: 20866653 DOI: 10.1103/physreve.82.011912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/09/2010] [Indexed: 05/29/2023]
Abstract
Alpha rhythm is a major component of spontaneous electroencephalographic (EEG) data. We develop a novel method that can be used to estimate the instantaneous phases and amplitudes of the alpha rhythm with high accuracy by modeling the alpha rhythm phase and amplitude as Markov random field (MRF) models. By using a belief propagation technique, we construct an exact-inference algorithm that can be used to estimate instantaneous phases and amplitudes and calculate the marginal likelihood. Maximizing the marginal likelihood enables us to estimate the hyperparameters on the basis of type-II maximum likelihood estimation. We prove that the instantaneous phase and amplitude estimation by our method is consistent with that by the Hilbert transform, which has been commonly used to estimate instantaneous phases and amplitudes, of a signal filtered from observed data in the limited case that the observed data consist of only one frequency signal whose amplitude is constant and a Gaussian noise. Comparison of the performances of observation noise reduction by our method and by a Gaussian MRF model of alpha rhythm signal indicates that our method reduces observation noise more efficiently. Moreover, the instantaneous phase and amplitude estimates obtained using our method are more accurate than those obtained by the Hilbert transform. Application of our method to experimental EEG data also demonstrates that the relationship between the alpha rhythm phase and the reaction time emerges more clearly by using our method than the Hilbert transform. This indicates our method's practical usefulness. Therefore, applying our method to experimental EEG data will enable us to estimate the instantaneous phases and amplitudes of the alpha rhythm more precisely.
Collapse
Affiliation(s)
- Yasushi Naruse
- Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan.
| | | | | | | |
Collapse
|
29
|
Chorlian DB, Rangaswamy M, Porjesz B. EEG coherence: topography and frequency structure. Exp Brain Res 2009; 198:59-83. [DOI: 10.1007/s00221-009-1936-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 06/29/2009] [Indexed: 11/30/2022]
|
30
|
Henderson JA, Phillips AJK, Robinson PA. Multielectrode electroencephalogram power spectra: theory and application to approximate correction of volume conduction effects. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:051918. [PMID: 16802978 DOI: 10.1103/physreve.73.051918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Indexed: 05/10/2023]
Abstract
Using a physiologically based model of brain activity, electroencephalogram (EEG) power spectra are calculated for signals derived from general linear combinations of voltages from multiple electrodes, with and without filtering by volume conduction. Two simple methods of combining scalp measurements to estimate unfiltered EEG power spectra are then proposed and their accuracy and robustness are explored, using the model predictions as an illustration. It is found that these methods, including a case that uses just three electrodes, enable improved estimation of the underlying spectrum relative to each of several widely used combinations alone.
Collapse
Affiliation(s)
- J A Henderson
- School of Physics, University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
31
|
O'Connor SC, Robinson PA. Analysis of the electroencephalographic activity associated with thalamic tumors. J Theor Biol 2004; 233:271-86. [PMID: 15619366 DOI: 10.1016/j.jtbi.2004.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 10/07/2004] [Indexed: 11/24/2022]
Abstract
A physiologically based model of corticothalamic dynamics is used to investigate the electroencephalographic (EEG) activity associated with tumors of the thalamus. Tumor activity is modeled by introducing localized two-dimensional spatial non-uniformities into the model parameters, and calculating the resulting activity via the coupling of spatial eigenmodes. The model is able to reproduce various qualitative features typical of waking eyes-closed EEGs in the presence of a thalamic tumor, such as the appearance of abnormal peaks at theta ( approximately 3Hz) and spindle ( approximately 12Hz) frequencies, the attenuation of normal eyes-closed background rhythms, and the onset of epileptic activity, as well as the relatively normal EEGs often observed. The results indicate that the abnormal activity at theta and spindle frequencies arises when a small portion of the brain is forced into an over-inhibited state due to the tumor, in which there is an increase in the firing of (inhibitory) thalamic reticular neurons. The effect is heightened when there is a concurrent decrease in the firing of (excitatory) thalamic relay neurons, which are in any case inhibited by the reticular ones. This is likely due to a decrease in the responsiveness of the peritumoral region to cholinergic inputs from the brainstem, and a corresponding depolarization of thalamic reticular neurons, and hyperpolarization of thalamic relay neurons, similar to the mechanism active during slow-wave sleep. The results indicate that disruption of normal thalamic activity is essential to generate these spectral peaks. Furthermore, the present work indicates that high-voltage and epileptiform EEGs are caused by a tumor-induced local over-excitation of the thalamus, which propagates to the cortex. Experimental findings relating to local over-inhibition and over-excitation are discussed. It is also confirmed that increasing the size of the tumor leads to greater abnormalities in the observable EEG. The usefulness of EEG for localizing the tumor is investigated.
Collapse
Affiliation(s)
- S C O'Connor
- School of Physics, University of Sydney, Broadway, Sydney, NSW 2006, Australia.
| | | |
Collapse
|