1
|
Dharodi VS, Murillo MS. Sculpted ultracold neutral plasmas. Phys Rev E 2020; 101:023207. [PMID: 32168665 DOI: 10.1103/physreve.101.023207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Ultracold neutral plasma (UNP) experiments allow for careful control of plasma properties across Coulomb coupling regimes. Here, we examine how UNPs can be used to study heterogeneous, nonequilibrium phenomena, including nonlinear waves, transport, hydrodynamics, kinetics, stopping power, and instabilities. Through a series of molecular dynamics simulations, we have explored UNPs formed with spatially modulated ionizing radiation. We have developed a computational model for such sculpted UNPs that includes an ionic screened Coulomb interaction with a spatiotemporal screening length, and Langevin-based spatial ion-electron and ion-neutral collisions. We have also developed a hydrodynamics model and have extracted its field quantities (density, flow velocity, and temperature) from the molecular dynamics simulation data, allowing us to investigate kinetics by examining moment ratios and phase-space dynamics; we find that it is possible to create UNPs that vary from nearly perfect fluids (Euler limit) to highly kinetic plasmas. We have examined plasmas in three geometries: a solid rod, a hollow rod, and a gapped slab; we have studied basic properties of these plasmas, including the spatial Coulomb coupling parameter. By varying the initial conditions, we find that we can design experimental plasmas that would allow the exploration of a wide range of phenomena, including shock and blast waves, stopping power, two-stream instabilities, and much more. Using an evaporative cooling geometry, our results suggest that much larger Coulomb couplings can be achieved, possibly in excess of 10.
Collapse
Affiliation(s)
- Vikram S Dharodi
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael S Murillo
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
2
|
Han KH, Kim C, Talkner P, Karniadakis GE, Lee EK. Molecular hydrodynamics: Vortex formation and sound wave propagation. J Chem Phys 2018; 148:024506. [PMID: 29331127 DOI: 10.1063/1.5011992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the present study, quantitative feasibility tests of the hydrodynamic description of a two-dimensional fluid at the molecular level are performed, both with respect to length and time scales. Using high-resolution fluid velocity data obtained from extensive molecular dynamics simulations, we computed the transverse and longitudinal components of the velocity field by the Helmholtz decomposition and compared them with those obtained from the linearized Navier-Stokes (LNS) equations with time-dependent transport coefficients. By investigating the vortex dynamics and the sound wave propagation in terms of these field components, we confirm the validity of the LNS description for times comparable to or larger than several mean collision times. The LNS description still reproduces the transverse velocity field accurately at smaller times, but it fails to predict characteristic patterns of molecular origin visible in the longitudinal velocity field. Based on these observations, we validate the main assumptions of the mode-coupling approach. The assumption that the velocity autocorrelation function can be expressed in terms of the fluid velocity field and the tagged particle distribution is found to be remarkably accurate even for times comparable to or smaller than the mean collision time. This suggests that the hydrodynamic-mode description remains valid down to the molecular scale.
Collapse
Affiliation(s)
- Kyeong Hwan Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Changho Kim
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Peter Talkner
- Institut für Physik, Universität Augsburg, 86159 Augsburg, Germany
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
| | - Eok Kyun Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
3
|
Antoine C, Talbot J. Effect of crowding and confinement on first-passage times: A model study. Phys Rev E 2016; 93:062120. [PMID: 27415221 DOI: 10.1103/physreve.93.062120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 06/06/2023]
Abstract
We study the "color dynamics" of a hard-disk fluid confined in an annulus, as well as the corresponding hard-sphere system in three dimensions, using event-driven simulation in order to explore the effect of confinement and self-crowding on the search for targets. We compute the mean first-passage times (MFPTs) of red particles transiting from the outer to the inner boundary as well as those of blue particles passing from the inner to the outer boundary for different packing fractions and geometries. In the steady state the reaction rate, defined as the rate of collision of red particles with the inner boundary, is inversely proportional to the sum of the MFPTs. The reaction rate is wall mediated (ballistic) at low densities and diffusion controlled at higher densities and displays a maximum at intermediate densities. At moderate to high densities, the presence of layering has a strong influence on the search process. The numerical results for the reaction rate and MFPTs are compared with a ballistic model at low densities and a Smoluchowski approach with uniform diffusivities at higher densities. We discuss the reasons for the limited validity of the theoretical approaches. The maximum in the reaction rate is qualitatively well rendered by a Bosanquet-like approach that interpolates between the two regimes. Finally, we compute the position-dependent diffusivity from the MFPTs and observe that it is out of phase with the radial density.
Collapse
Affiliation(s)
- C Antoine
- Laboratoire de Physique Théorique de la Matière Condensée, UPMC, CNRS UMR 7600, Sorbonne Universités, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - J Talbot
- Laboratoire de Physique Théorique de la Matière Condensée, UPMC, CNRS UMR 7600, Sorbonne Universités, 4 place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
4
|
Taloni A, Meroz Y, Huerta A. Collisional statistics and dynamics of two-dimensional hard-disk systems: From fluid to solid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022131. [PMID: 26382368 DOI: 10.1103/physreve.92.022131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 06/05/2023]
Abstract
We perform extensive MD simulations of two-dimensional systems of hard disks, focusing on the collisional statistical properties. We analyze the distribution functions of velocity, free flight time, and free path length for packing fractions ranging from the fluid to the solid phase. The behaviors of the mean free flight time and path length between subsequent collisions are found to drastically change in the coexistence phase. We show that single-particle dynamical properties behave analogously in collisional and continuous-time representations, exhibiting apparent crossovers between the fluid and the solid phases. We find that, both in collisional and continuous-time representation, the mean-squared displacement, velocity autocorrelation functions, intermediate scattering functions, and self-part of the van Hove function (propagator) closely reproduce the same behavior exhibited by the corresponding quantities in granular media, colloids, and supercooled liquids close to the glass or jamming transition.
Collapse
Affiliation(s)
- Alessandro Taloni
- CNR-IENI, Via R. Cozzi 53, 20125 Milano, Italy
- Institute for Scientific Interchange (ISI), Via Alassio 11c, 10126 Turin, Italy
- Center for Complexity & Biosystems, Physics Department, University of Milan "La Statale," Via Giovanni Celoria, 16, 20133 Milano, Italy
| | - Yasmine Meroz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Adrián Huerta
- Facultad de Física, Universidad Veracruzana, Circuito Gonzálo Aguirre Beltrán s/n Zona Universitaria, Xalapa, Veracruz 91000, México
| |
Collapse
|
5
|
Huerta A, Bryk T, Trokhymchuk A. Collective excitations in 2D hard-disc fluid. J Colloid Interface Sci 2015; 449:357-63. [DOI: 10.1016/j.jcis.2014.12.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022]
|
6
|
Zhao N, Sugiyama M, Ruggeri T. Phase transition induced by a shock wave in hard-sphere and hard-disk systems. J Chem Phys 2008; 129:054506. [PMID: 18698913 DOI: 10.1063/1.2936990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dynamic phase transition induced by a shock wave in hard-sphere and hard-disk systems is studied on the basis of the system of Euler equations with caloric and thermal equations of state. First, Rankine-Hugoniot conditions are analyzed. The quantitative classification of Hugoniot types in terms of the thermodynamic quantities of the unperturbed state (the state before a shock wave) and the shock strength is made. Especially Hugoniot in typical two possible cases (P-1 and P-2) of the phase transition is analyzed in detail. In the case P-1 the phase transition occurs between a metastable liquid state and a stable solid state, and in the case P-2 the phase transition occurs through coexistence states, when the shock strength changes. Second, the admissibility of the two cases is discussed from a viewpoint of the recent mathematical theory of shock waves, and a rule with the use of the maximum entropy production rate is proposed as the rule for selecting the most probable one among the possible cases, that is, the most suitable constitutive equation that predicts the most probable shock wave. According to the rule, the constitutive equation in the case P-2 is the most promising one in the dynamic phase transition. It is emphasized that hard-sphere and hard-disk systems are suitable reference systems for studying shock wave phenomena including the shock-induced phase transition in more realistic condensed matters.
Collapse
Affiliation(s)
- Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China.
| | | | | |
Collapse
|
7
|
Isobe M. Long-time tail of the velocity autocorrelation function in a two-dimensional moderately dense hard-disk fluid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:021201. [PMID: 18352013 DOI: 10.1103/physreve.77.021201] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 11/16/2007] [Indexed: 05/26/2023]
Abstract
Alder and Wainwright discovered the slow power decay ~t(-d/2) (d is dimension) of the velocity autocorrelation function in moderately dense hard-sphere fluids using the event-driven molecular dynamics simulations. In the two-dimensional (2D) case, the diffusion coefficient derived using the time correlation expression in linear response theory shows logarithmic divergence, which is called the "2D long-time-tail problem." We reexamined this problem to perform a large-scale, long-time simulation with 1x10(6) hard disks using a modern efficient algorithm and found that the decay of the long tail in moderately dense fluids is slightly faster than the power decay (~1/t) . We also compared our numerical data with the prediction of the self-consistent mode-coupling theory in the long-time limit [~1/(t sqrt[ln t])] .
Collapse
Affiliation(s)
- Masaharu Isobe
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan.
| |
Collapse
|
8
|
Lutsko JF. Hydrodynamics of an endothermic gas with application to bubble cavitation. J Chem Phys 2006; 125:164319. [PMID: 17092085 DOI: 10.1063/1.2357150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hydrodynamics for a gas of hard spheres which sometimes experience inelastic collisions resulting in the loss of a fixed, velocity-independent, amount of energy Delta is investigated with the goal of understanding the coupling between hydrodynamics and endothermic chemistry. The homogeneous cooling state of a uniform system and the modified Navier-Stokes equations are discussed and explicit expressions given for the pressure, cooling rates, and all transport coefficients for D dimensions. The Navier-Stokes equations are solved numerically for the case of a two-dimensional gas subject to a circular piston so as to illustrate the effects of the energy loss on the structure of shocks found in cavitating bubbles. It is found that the maximal temperature achieved is a sensitive function of Delta with a minimum occurring near the physically important value of Delta approximately 12,000 K approximately 1 eV.
Collapse
Affiliation(s)
- James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, C.P. 231, Boulevard du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|
9
|
Lutsko JF. Transport properties of dense dissipative hard-sphere fluids for arbitrary energy loss models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:021306. [PMID: 16196555 DOI: 10.1103/physreve.72.021306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Indexed: 05/04/2023]
Abstract
The revised Enskog approximation for a fluid of hard spheres which lose energy upon collision is discussed for the case that the energy is lost from the normal component of the velocity at collision but is otherwise arbitrary. Granular fluids with a velocity-dependent coefficient of restitution are an important special case covered by this model. A normal solution to the Enskog equation is developed using the Chapman-Enskog expansion. The lowest order solution describes the general homogeneous cooling state and a generating function formalism is introduced for the determination of the distribution function. The first order solution, evaluated in the lowest Sonine approximation, provides estimates for the transport coefficients for the Navier-Stokes hydrodynamic description. All calculations are performed in an arbitrary number of dimensions.
Collapse
Affiliation(s)
- James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Campus Plaine, CP 231, 1050 Bruxelles, Belgium.
| |
Collapse
|
10
|
Discussions on Sonoluminescence. Comput Sci Eng 2005. [DOI: 10.1109/mcse.2005.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|