1
|
Germain P, Amokrane S. Glass transition and reversible gelation in asymmetric binary mixtures: A study by mode coupling theory and molecular dynamics. Phys Rev E 2019; 100:042614. [PMID: 31770885 DOI: 10.1103/physreve.100.042614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 06/10/2023]
Abstract
The glass transition and the binodals of asymmetric binary mixtures are investigated from the effective fluid approach in the mode coupling theory and by molecular dynamics. Motivated by previous theoretical predictions, the hard-sphere mixture and the Asakura-Oosawa models are used to analyze experimental results from the literature, relative to polystyrene spheres mixed either with linear polymers or with dense microgel particles. In agreement with the experimental observations, the specificity of the depletant particles is shown to favor lower density gels. It further favors equilibrium gelation by reducing also the tendency of the system to phase separate. These results are confirmed by a phenomenological modification of the mode coupling theory in which the vertex functions are computed at an effective density lower than the actual one. A model effective potential in asymmetric mixtures of hard particles is used to further check this phenomenological modification against molecular dynamics simulation.
Collapse
Affiliation(s)
- Ph Germain
- Physique des Liquides et Milieux Complexes, Faculté des Sciences et Technologie, Université Paris Est (Créteil), 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - S Amokrane
- Physique des Liquides et Milieux Complexes, Faculté des Sciences et Technologie, Université Paris Est (Créteil), 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| |
Collapse
|
2
|
Amokrane S, Tchangnwa Nya F, Ndjaka JM. Glass transition in hard-core fluids and beyond, using an effective static structure in the mode coupling theory. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:17. [PMID: 28210959 DOI: 10.1140/epje/i2017-11506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
The dynamical arrest in classical fluids is studied using a simple modification of the mode coupling theory (MCT) aimed at correcting its overestimation of the tendency to glass formation while preserving its overall structure. As in previous attempts, the modification is based on the idea of tempering the static pair correlations used as input. It is implemented in this work by computing the static structure at a different state point than the one used to solve the MCT equation for the intermediate scattering function, using the pure hard-sphere glass for calibration. The location of the glass transition predicted from this modification is found to agree with simulations data for a variety of systems --pure fluids and mixtures with either purely repulsive interaction potentials or ones with attractive contributions. Besides improving the predictions in the long-time limit, and so reducing the non-ergodicity domain, the same modification works as well for the time-dependent correlators.
Collapse
Affiliation(s)
- S Amokrane
- Physique des Liquides et Milieux Complexes, Faculté des Sciences et Technologie, Université Paris-Est (Créteil), 61 Av. du Général de Gaulle, 94010, Créteil Cedex, France.
| | - F Tchangnwa Nya
- Physique des Liquides et Milieux Complexes, Faculté des Sciences et Technologie, Université Paris-Est (Créteil), 61 Av. du Général de Gaulle, 94010, Créteil Cedex, France
- Département de Physique, Faculté des Sciences, Université de Maroua, BP 814, Maroua, Cameroon
| | - J M Ndjaka
- Département de Physique, Faculté des Sciences, Université de Yaoundé, I. B.P. 812, Yaoundé, Cameroon
| |
Collapse
|
3
|
Ashton DJ, Ivell SJ, Dullens RPA, Jack RL, Wilding NB, Aarts DGAL. Self-assembly and crystallisation of indented colloids at a planar wall. SOFT MATTER 2015; 11:6089-6098. [PMID: 26133286 DOI: 10.1039/c5sm01043h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report experimental and simulation studies of the structure of a monolayer of indented ("lock and key") colloids, on a planar surface. On adding a non-absorbing polymer with prescribed radius and volume fraction, depletion interactions are induced between the colloids, with controlled range and strength. For spherical particles, this leads to crystallisation, but the indented colloids crystallise less easily than spheres, in both simulation and experiment. Nevertheless, simulations show that indented colloids do form plastic (rotator) crystals. We discuss the conditions under which this occurs, and the possibilities of lower-symmetry crystal states. We also comment on the kinetic accessibility of these states.
Collapse
|
4
|
Ndong Mintsa E, Germain P, Amokrane S. Bond lifetime and diffusion coefficient in colloids with short-range interactions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:21. [PMID: 25813606 DOI: 10.1140/epje/i2015-15021-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
We use molecular dynamics simulations to study the influence of short-range structures in the interaction potential between hard-sphere-like colloidal particles. Starting from model potentials and effective potentials in binary mixtures computed from the Ornstein-Zernike equations, we investigate the influence of the range and strength of a possible tail beyond the usual core repulsion or the presence of repulsive barriers. The diffusion coefficient and mean "bond" lifetimes are used as indicators of the effect of this structure on the dynamics. The existence of correlations between the variations of these quantities with the physical parameters is discussed to assess the interpretation of dynamics slowing down in terms of long-lived bonds. We also discuss the question of a universal behaviour determined by the second virial coefficient B ((2)) and the interplay of attraction and repulsion. While the diffusion coefficient follows the B ((2)) law for purely attractive tails, this is no longer true in the presence of repulsive barriers. Furthermore, the bond lifetime shows a dependence on the physical parameters that differs from that of the diffusion coefficient. This raises the question of the precise role of bonds on the dynamics slowing down in colloidal gels.
Collapse
Affiliation(s)
- E Ndong Mintsa
- Laboratoire "Physique de Liquides et Milieux Complexes", Faculté des Sciences et Technologie, Université Paris-Est, Créteil, 61 avenue du Général de Gaulle, 94010, Créteil Cedex, France
| | | | | |
Collapse
|
5
|
Rovigatti L, Gnan N, Parola A, Zaccarelli E. How soft repulsion enhances the depletion mechanism. SOFT MATTER 2015; 11:692-700. [PMID: 25428843 DOI: 10.1039/c4sm02218a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigate binary mixtures of large colloids interacting through soft potentials with small, ideal depletants. We show that softness has a dramatic effect on the resulting colloid-colloid effective potential when the depletant-to-colloid size ratio q is small, with significant consequences on the colloidal phase behaviour. We provide an exact relationship that allows us to obtain the effective pair potential for any type of colloid-depletant interaction in the case of ideal depletants, without having to rely on complicated and expensive full-mixture simulations. We also show that soft repulsion among depletants further enhances the tendency of colloids to aggregate. Our theoretical and numerical results demonstrate that--in the limit of small q--soft mixtures cannot be mapped onto hard systems and hence soft depletion is not a mere extension of the widely used Asakura-Oosawa potential.
Collapse
Affiliation(s)
- Lorenzo Rovigatti
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria.
| | | | | | | |
Collapse
|
6
|
Hunter GL, Weeks ER. Free-energy landscape for cage breaking of three hard disks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031504. [PMID: 22587100 DOI: 10.1103/physreve.85.031504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Indexed: 05/31/2023]
Abstract
We investigate cage breaking in dense hard-disk systems using a model of three Brownian disks confined within a circular corral. This system has a six-dimensional configuration space, but can be equivalently thought to explore a symmetric one-dimensional free-energy landscape containing two energy minima separated by an energy barrier. The exact free-energy landscape can be calculated as a function of system size by a direct enumeration of states. Results of simulations show the average time between cage breaking events follows an Arrhenius scaling when the energy barrier is large. We also discuss some of the consequences of using a one-dimensional representation to understand dynamics through a multidimensional space, such as diffusion acquiring spatial dependence and discontinuities in spatial derivatives of free energy.
Collapse
Affiliation(s)
- Gary L Hunter
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
7
|
Ashton DJ, Wilding NB, Roth R, Evans R. Depletion potentials in highly size-asymmetric binary hard-sphere mixtures: comparison of simulation results with theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:061136. [PMID: 22304069 DOI: 10.1103/physreve.84.061136] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Indexed: 05/31/2023]
Abstract
We report a detailed study, using state-of-the-art simulation and theoretical methods, of the effective (depletion) potential between a pair of big hard spheres immersed in a reservoir of much smaller hard spheres, the size disparity being measured by the ratio of diameters q ≡ σ(s)/σ(b). Small particles are treated grand canonically, their influence being parameterized in terms of their packing fraction in the reservoir η(s)(r). Two Monte Carlo simulation schemes--the geometrical cluster algorithm, and staged particle insertion--are deployed to obtain accurate depletion potentials for a number of combinations of q ≤ 0.1 and η(s)(r). After applying corrections for simulation finite-size effects, the depletion potentials are compared with the prediction of new density functional theory (DFT) calculations based on the insertion trick using the Rosenfeld functional and several subsequent modifications. While agreement between the DFT and simulation is generally good, significant discrepancies are evident at the largest reservoir packing fraction accessible to our simulation methods, namely, η(s)(r) = 0.35. These discrepancies are, however, small compared to those between simulation and the much poorer predictions of the Derjaguin approximation at this η(s)(r). The recently proposed morphometric approximation performs better than Derjaguin but is somewhat poorer than DFT for the size ratios and small-sphere packing fractions that we consider. The effective potentials from simulation, DFT, and the morphometric approximation were used to compute the second virial coefficient B(2) as a function of η(s)(r). Comparison of the results enables an assessment of the extent to which DFT can be expected to correctly predict the propensity toward fluid-fluid phase separation in additive binary hard-sphere mixtures with q ≤ 0.1. In all, the new simulation results provide a fully quantitative benchmark for assessing the relative accuracy of theoretical approaches for calculating depletion potentials in highly size-asymmetric mixtures.
Collapse
Affiliation(s)
- Douglas J Ashton
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | |
Collapse
|
8
|
Ashton DJ, Liu J, Luijten E, Wilding NB. Monte Carlo cluster algorithm for fluid phase transitions in highly size-asymmetrical binary mixtures. J Chem Phys 2010; 133:194102. [DOI: 10.1063/1.3495996] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Germain P. Effect of residual attractive interactions in size asymmetric colloidal mixtures: Theoretical analysis and predictions. J Chem Phys 2010; 133:044905. [DOI: 10.1063/1.3456734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Germain P, Amokrane S. Gelation and phase coexistence in colloidal suspensions with short-range forces: generic behavior versus specificity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:011407. [PMID: 20365373 DOI: 10.1103/physreve.81.011407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/31/2009] [Indexed: 05/29/2023]
Abstract
The interplay between physical gelation and equilibrium phase transitions in asymmetric binary mixtures is analyzed from the effective fluid approach, in which the big particles interact via a short-range effective attraction beyond the core due to the depletion mechanism. The question of the universality of the scenario for dynamical arrest is then addressed. The comparison of the phase diagrams of the hard-sphere mixture and the Asakura-Oosawa models at various size ratios shows that strong specificity is observed for nonideal depletants. In particular, equilibrium gelation, without the competition with fluid-fluid transition is possible in mixtures of hard-sphere colloids. This is interpreted from the specificities of the effective potential, such as its oscillatory behavior and its complex variation with the physical parameters. The consequences on the dynamical arrest and the fluid-fluid transition are then investigated by considering in particular the role of the well at contact and the first repulsive barrier. This is done for the actual effective potential in the hard-sphere mixture and for a square well and shoulder model, which allows a separate discussion of the role of the different parameters, in particular on the localization length and the escape time. This study is next extended to mixtures of "hard-sphere-like" colloids with residual interactions. It confirms the trends relative to equilibrium gelation and illustrates a diversity of the phase behavior well beyond the scenarios expected from simple models.
Collapse
Affiliation(s)
- Ph Germain
- Physique des Liquides et Milieux Complexes, Faculté des Sciences et Technologie, Université Paris Est (Créteil), Créteil Cedex, France
| | | |
Collapse
|
11
|
Germain P, Amokrane S. Equilibrium route to colloidal gelation: mixtures of hard-sphere-like colloids. PHYSICAL REVIEW LETTERS 2009; 102:058301. [PMID: 19257564 DOI: 10.1103/physrevlett.102.058301] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Indexed: 05/27/2023]
Abstract
The binodals and the nonergodicity lines of a binary mixture of hard-sphere-like particles with a large size ratio are computed for studying the interplay between dynamic arrest and phase separation in depletion-driven colloidal mixtures. Contrary to the case of hard core plus short-range effective attraction, physical gelation without competition with the fluid-phase separation can occur in such mixtures. This behavior due to the oscillations in the depletion potential should concern all simple mixtures with a nonideal depletant, justifying further studies of their dynamic properties.
Collapse
Affiliation(s)
- Ph Germain
- Laboratoire de Physique des Liquides et Milieux Complexes, Faculté des Sciences et Technologie, Université Paris Est (Créteil), 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | | |
Collapse
|
12
|
Yuste SB, Santos A, López de Haro M. Depletion potential in the infinite dilution limit. J Chem Phys 2008; 128:134507. [DOI: 10.1063/1.2841172] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Cinacchi G, Martínez-Ratón Y, Mederos L, Navascués G, Tani A, Velasco E. Large attractive depletion interactions in soft repulsive–sphere binary mixtures. J Chem Phys 2007; 127:214501. [DOI: 10.1063/1.2804330] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Germain P, Amokrane S. Equilibrium and glassy states of the Asakura-Oosawa and binary hard sphere mixtures: effective fluid approach. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:031401. [PMID: 17930241 DOI: 10.1103/physreve.76.031401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Indexed: 05/25/2023]
Abstract
Motivated by recent experimental results on model binary colloidal mixtures, especially for the glass transition, we investigate the phase diagram of two models of asymmetric binary mixtures: the hard sphere and the Asakura-Oosawa mixtures. This includes the binodals and the glass transition line, computed in the effective one-component representation using the corresponding potentials of mean force at infinite dilution. The reference hypernetted chain approximation is used for computing the static properties and the glass transition line is computed in the mode coupling approximation. The similarities and the differences between the two models are discussed for different size ratios. It is shown that while both models follow a universal behavior at large asymmetry, the hard sphere mixture model leads to more original results at moderate size ratio. These results show that a modeling beyond generic effective potentials might be necessary for an appropriate description of the complete phase diagram.
Collapse
Affiliation(s)
- Ph Germain
- Physique des Liquides et Milieux Complexes, Faculté des Sciences et Technologie, Université Paris XII, Val de Marne, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | | |
Collapse
|
15
|
Ayadim A, Amokrane S. Phase transitions in highly asymmetric binary hard-sphere fluids: Fluid-fluid binodal from a two-component mixture theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:021106. [PMID: 17025392 DOI: 10.1103/physreve.74.021106] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Indexed: 05/12/2023]
Abstract
Fluid-fluid binodals of binary hard-sphere mixtures are computed from the recently proposed fundamental measure functional-mean spherical approximation closure of the two-component Ornstein-Zernike equation. The results, especially in the dense fluid region that was not accessible by previous theoretical methods, are compared with the corresponding ones for the one-component fluid of big spheres with effective potential obtained from the same closure. The general trends are those expected for hard-sphere potentials but small difference are detectable. The overall agreement found validates the equivalence of the two descriptions for size ratios R = 8.5 or greater.
Collapse
Affiliation(s)
- A Ayadim
- Physique des Liquides et Milieux Complexes, Faculté des Sciences et de Technologie, Université Paris XII, 61 Av. du Général de Gaulle, 94010 Créteil Cedex, France
| | | |
Collapse
|
16
|
Largo J, Wilding NB. Influence of polydispersity on the critical parameters of an effective-potential model for asymmetric hard-sphere mixtures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:036115. [PMID: 16605606 DOI: 10.1103/physreve.73.036115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Indexed: 05/08/2023]
Abstract
We report a Monte Carlo simulation study of the properties of highly asymmetric binary hard-sphere mixtures. This system is treated within an effective fluid approximation in which the large particles interact through a depletion potential [R. Roth, Phys. Rev. E 62 5360 (2000)] designed to capture the effects of a virtual sea of small particles. We generalize this depletion potential to include the effects of explicit size dispersity in the large particles and consider the case in which the particle diameters are distributed according to a Schulz form having a degree of polydispersity 14%. The resulting alteration (with respect to the monodisperse limit) of the metastable fluid-fluid critical point parameters is determined for two values of the ratio of the diameters of the small and large particles: q(triple bond)sigma(s)/(-)sigma(b)=0.1 and q=0.05. We find that the inclusion of polydispersity moves the critical point to lower reservoir volume fractions of the small particles and high volume fractions of the large ones. The estimated critical point parameters are found to be in good agreement with those predicted by a generalized corresponding states argument which provides a link to the known critical adhesion parameter of the adhesive hard-sphere model. Finite-size scaling estimates of the cluster percolation line in the one phase fluid region indicate that inclusion of polydispersity moves the critical point deeper into the percolating regime. This suggests that phase separation is more likely to be preempted by dynamical arrest in polydisperse systems.
Collapse
Affiliation(s)
- Julio Largo
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | | |
Collapse
|
17
|
Ayadim A, Malherbe JG, Amokrane S. Potential of mean force in confined colloids: Integral equations with fundamental measure bridge functions. J Chem Phys 2005; 122:234908. [PMID: 16008488 DOI: 10.1063/1.1938194] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The potential of mean force for uncharged macroparticles suspended in a fluid confined by a wall or a narrow pore is computed for solvent-wall and solvent-macroparticle interactions with attractive forces. Bridge functions taken from Rosenfeld's density-functional theory are used in the reference hypernetted chain closure of the Ornstein-Zernike integral equations. The quality of this closure is assessed by comparison with simulation. As an illustration, the role of solvation forces is investigated. When the "residual" attractive tails are given a range appropriate to "hard sphere-like" colloids, the unexpected role of solvation forces previously observed in bulk colloids is confirmed in the confinement situation.
Collapse
Affiliation(s)
- A Ayadim
- Physique des Liquides et Milieux Complexes, Faculté des Sciences et de Technologie Université Paris XII, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France.
| | | | | |
Collapse
|
18
|
|