1
|
Silva P, Silva GMC, Morgado P, Fauré MC, Goldmann M, Filipe EJM. Origin of the central pit in hemimicelles of semifluorinated alkanes: How molecular dipoles and substrate deformation can determine supra-molecular morphology. J Colloid Interface Sci 2024; 655:576-583. [PMID: 37956545 DOI: 10.1016/j.jcis.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
HYPOTHESIS Semifluorinated alkanes amphiphiles spontaneously form highly monodispersed hemimicelles at the surface of water. The origin of the formation and complex structure of these surprising supramolecular aggregates were only recently clarified using molecular dynamics simulations (MD). The existence of a pit at the center of these aggregates made up of almost 3000 molecules was indeed reproduced by the MD simulations, but not understood. METHOD A careful strategy of atomistic MD simulations comparing non-electrostatic force fields with force fields that include electrostatic forces, thus bearing an implicit or explicit dipole, allowed demonstrating the roles of dipolar interactions and interactions with the liquid subphase on the morphology of the aggregates. FINDINGS The simulation results clearly show that within the hemimicelles the strong molecular dipoles located at the CH2-CF2 junctions tend to align, leading to a collective shift of the PFAA molecules relatively to each other. This shift is responsible for the curvature of the hemimicelles and originates the central pit, provided the possibility of deforming the surface of the water sub-phase. Comparisons with non-electrostatic force field results further contribute to understand the origin of the self-assembling process. The results directly connect for the first time a molecular property with a mesoscopic structural feature. Given the molecular simplicity of these "primitive" amphiphiles compared to the common hydrophilic/hydrophobic surfactants, the results contribute to understand self-assembly in general.
Collapse
Affiliation(s)
- Pedro Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Sorbonne Université, Institut des NanoSciences de Paris, CNRS-UMR 7588, 4 place Jussieu, 75005 Paris, France
| | - Gonçalo M C Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Pedro Morgado
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Marie-Claude Fauré
- Sorbonne Université, Institut des NanoSciences de Paris, CNRS-UMR 7588, 4 place Jussieu, 75005 Paris, France; Université Paris Cité, UFR des Sciences Fondamentales et Biomédicales, 45 Rue de Saints-Pères, 75006 Paris, France
| | - Michel Goldmann
- Sorbonne Université, Institut des NanoSciences de Paris, CNRS-UMR 7588, 4 place Jussieu, 75005 Paris, France; Université Paris Cité, UFR des Sciences Fondamentales et Biomédicales, 45 Rue de Saints-Pères, 75006 Paris, France; Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP48, 91192 Gif-Sur-Yvette, France
| | - Eduardo J M Filipe
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| |
Collapse
|
2
|
El Abed AI. Experimental validation of the Helmoltz equation for the surface potential of Langmuir monolayers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:041601. [PMID: 19905315 DOI: 10.1103/physreve.80.041601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Indexed: 05/28/2023]
Abstract
We show in this paper that monolayers of the nonhydrophilic F8H18 semifluorinated n -alkane constitute when spread on the hydrophobic top of an alamethicin Langmuir monolayer, a very good experimental system in order to check the validity of Helmoltz equation. This system allows for a good agreement between measured and calculated surface potentials of unionized Langmuir monolayers. We show also that the relative dielectric constant of the F8H18 monolayer does not vary upon compression of the monolayer, the measured 2.9 value is in a very good agreement with literature data. We attribute this behavior to the self-aggregation of F8H18 molecules in nanosized circular domains whose size remains constant upon compression as shown by atomic force microscopy.
Collapse
Affiliation(s)
- Abdel I El Abed
- Laboratoire de Neuro-Physique Cellulaire, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France.
| |
Collapse
|
3
|
Krafft MP, Riess JG. Chemistry, physical chemistry, and uses of molecular fluorocarbon--hydrocarbon diblocks, triblocks, and related compounds--unique "apolar" components for self-assembled colloid and interface engineering. Chem Rev 2009; 109:1714-92. [PMID: 19296687 DOI: 10.1021/cr800260k] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marie Pierre Krafft
- Université de Strasbourg, Institut Charles Sadron (SOFFT-CNRS), 23 rue du Loess, 67034 Cedex, Strasbourg, France.
| | | |
Collapse
|
4
|
Broniatowski M, Vila-Romeu N, Dynarowicz-Łatka P. Two-Dimensional Miscibility Studies of Alamethicin and Selected Film-Forming Molecules. J Phys Chem B 2008; 112:7762-70. [DOI: 10.1021/jp800234k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marcin Broniatowski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland, and Faculty of Sciences, Department of Physical Chemistry, University of Vigo, Campus Ourense, As Lagoas s/n, 32004 Ourense, Spain
| | - Nuria Vila-Romeu
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland, and Faculty of Sciences, Department of Physical Chemistry, University of Vigo, Campus Ourense, As Lagoas s/n, 32004 Ourense, Spain
| | - Patrycja Dynarowicz-Łatka
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland, and Faculty of Sciences, Department of Physical Chemistry, University of Vigo, Campus Ourense, As Lagoas s/n, 32004 Ourense, Spain
| |
Collapse
|
5
|
Broniatowski M, Dynarowicz-Łatka P. Semifluorinated alkanes--primitive surfactants of fascinating properties. Adv Colloid Interface Sci 2008; 138:63-83. [PMID: 18082155 DOI: 10.1016/j.cis.2007.11.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 11/05/2007] [Accepted: 11/09/2007] [Indexed: 11/16/2022]
Abstract
Semifluorinated alkanes (SFAs) are diblock molecules, in which two mutually immiscible moieties, namely the hydrocarbon segment and the perfluorinated segment are bound covalently. The presence of two opposing segments within one molecule makes semifluorinated alkanes a very interesting class of compounds, which show a particular behavior both in bulk and at interfaces. Their highly asymmetric structure, arising from the incompatibility of the both constituent parts, results in surface activity of these molecules (so-called primitive surfactants) when dissolved in organic solvents, and allows for the Langmuir monolayer formation if spread at the air/water interface, despite of the absence of any polar group. Since 1984 (when SFAs have been characterized for the first time by Rabolt et al. [Rabolt JF, Russell TP, Twieg RJ. Macromolecules 1984;17:2786]), semifluorinated alkanes have been subjected to many studies. The present article reviews the results obtained so far and covers the aspects of their synthesis, properties in bulk (solutions and solid state) and applications. Special emphasis is put on the Langmuir monolayer properties and self-organization of SFAs on solid substrates.
Collapse
Affiliation(s)
- Marcin Broniatowski
- Jagiellonian University, Faculty of Chemistry, Ingardena 3, 30-060 Kraków, Poland.
| | | |
Collapse
|
6
|
El Abed AI, Ionov R, Goldmann M. Structural and electric properties of two semifluorinated alkane monolayers compressed on top of a controlled hydrophobic monolayer substrate. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:041606. [PMID: 17995003 DOI: 10.1103/physreve.76.041606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Indexed: 05/25/2023]
Abstract
We investigate the dynamic behavior upon lateral compression of two mixed films made with one of the two semifluorinated alkanes F(CF2)8(CH2)18H and F(CF2)10(CH2)10H and the natural alpha-helix alamethicin peptide. Surface pressure, surface potential versus molecular area isotherms, and grazing-incidence x-ray diffraction were applied to characterize this system. We show that both mixed films demix vertically to form two asymmetric flat bilayers where the lower layer is made of alamethicin and the upper layer is made of semifluorinated molecules. The structure matching of the semifluorinated alkanes (where the hydrophilic group is missing) with a suitable organization of the underlying alamethicin monolayer allows for a continuous compression of the upper semifluorinated layers while the density of the lower alamethicin monolayer remains constant. Comparing data of the two studied mixed films enables us to evaluate the effect of chain length on the in-plane organization of the molecules and on the electric properties of the upper layers.
Collapse
Affiliation(s)
- Abdel-Illah El Abed
- Laboratoire de Neuro-Physique Cellulaire, Université René Descartes, 45 rue des Saints-Pères, 75006 Paris, France.
| | | | | |
Collapse
|
7
|
Semenov AN, González-Pérez A, Krafft MP, Legrand JF. Theory of surface micelles of semifluorinated alkanes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:8703-17. [PMID: 17014108 DOI: 10.1021/la060638+] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Surface structures of semifluorinated alkanes F(CF(2))(n)(CH(2))(m)H (referred to as FnHm) spread on the air/water interface are investigated theoretically. The study is focused on the disklike surface micelles that were recently identified by AFM and scattering techniques at sufficiently high surface concentrations. We show that (1) the micelles emerge as a result of liquid/liquid (rather than liquid/gas) phase separation in the Langmuir layer; (2) the micelles are islands of the higher-density phase with roughly vertical orientation of FnHm molecules (F-parts extend toward air, H-parts toward water) and the matrix is the lower density-phase where the FnHm diblocks are nearly parallel to the water surface; (3) the micelles and the hexagonal structure they form are stabilized by the electrostatic interactions which are mainly due to the vertical dipole moments of the CF(2)- CH(2) bonds in the vertical phase; and (4) the electrostatic repulsive interactions can serve to suppress the micelle size polydispersity.
Collapse
|
8
|
Dynarowicz Łatka P, Pérez-Morales M, Muñoz E, Broniatowski M, Martín-Romero MT, Camacho L. Structural Investigation of Langmuir and Langmuir−Blodgett Monolayers of Semifluorinated Alkanes. J Phys Chem B 2006; 110:6095-100. [PMID: 16553421 DOI: 10.1021/jp057270u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The behavior of a semi-fluorinated alkane (C(10)F(21)C(19)H(39)) has been studied at the air-water interface by using surface pressure and surface potential-area isotherms as well as infrared spectroscopy for the Langmuir-Blodgett films. In addition, based on the quantum chemical PM3 semiempirical approach, the dimer structure was investigated, and the double helix was found to be the most stable conformation of the dimer. The obtained results allow us to imply that the phase transition observed in the course of the surface pressure/area isotherm is due to a conformational change originating from the double helix to a vertical, single helix configuration.
Collapse
Affiliation(s)
- Patrycja Dynarowicz Łatka
- Departamento de Química Física y Termodinamica Aplicada, Universidad de Córdoba, Campus Universitario de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|