de Queiroz SLA. Wavelet transforms in a critical interface model for Barkhausen noise.
PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008;
77:021131. [PMID:
18352011 DOI:
10.1103/physreve.77.021131]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/08/2007] [Indexed: 05/26/2023]
Abstract
We discuss the application of wavelet transforms to a critical interface model which is known to provide a good description of Barkhausen noise in soft ferromagnets. The two-dimensional version of the model (one-dimensional interface) is considered, mainly in the adiabatic limit of very slow driving. On length scales shorter than a crossover length (which grows with the strength of the surface tension), the effective interface roughness exponent zeta is approximately 1.20 , close to the expected value for the universality class of the quenched Edwards-Wilkinson model. We find that the waiting times between avalanches are fully uncorrelated, as the wavelet transform of their autocorrelations scales as white noise. Similarly, detrended size-size correlations give a white-noise wavelet transform. Consideration of finite driving rates, still deep within the intermittent regime, shows the wavelet transform of correlations scaling as 1/f(1.5) for intermediate frequencies. This behavior is ascribed to intra-avalanche correlations.
Collapse