1
|
Deng S, Li W, Täuber UC. Coupled two-species model for the pair contact process with diffusion. Phys Rev E 2020; 102:042126. [PMID: 33212676 DOI: 10.1103/physreve.102.042126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/05/2020] [Indexed: 11/07/2022]
Abstract
The contact process with diffusion (PCPD) defined by the binary reactions B+B→B+B+B, B+B→∅ and diffusive particle spreading exhibits an unusual active to absorbing phase transition whose universality class has long been disputed. Multiple studies have indicated that an explicit account of particle pair degrees of freedom may be required to properly capture this system's effective long-time, large-scale behavior. We introduce a two-species representation for the PCPD in which single particles B and particle pairs A are dynamically coupled according to the stochastic reaction processes B+B→A, A→A+B, A→∅, and A→B+B, with each particle type diffusing independently. Mean-field analysis reveals that the phase transition of this model is driven by competition and balance between the two species. We employ Monte Carlo simulations in one, two, and three dimensions to demonstrate that this model consistently captures the pertinent features of the PCPD. In the inactive phase, A particles rapidly go extinct, effectively leaving the B species to undergo pure diffusion-limited pair annihilation kinetics B+B→∅. At criticality, both A and B densities decay with the same exponents (within numerical errors) as the corresponding order parameters of the original PCPD, and display mean-field scaling above the upper critical dimension d_{c}=2. In one dimension, the critical exponents for the B species obtained from seed simulations also agree well with previously reported exponent value ranges. We demonstrate that the scaling properties of consecutive particle pairs in the PCPD are identical with that of the A species in the coupled model. This two-species picture resolves the conceptual difficulty for seed simulations in the original PCPD and naturally introduces multiple length scales and timescales to the system, which are also the origin of strong corrections to scaling. The extracted moment ratios from our simulations indicate that our model displays the same temporal crossover behavior as the PCPD, which further corroborates its full dynamical equivalence with our coupled model.
Collapse
Affiliation(s)
- Shengfeng Deng
- Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China.,Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Wei Li
- Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
| | - Uwe C Täuber
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
2
|
Park SC. Universality-class crossover by a nonorder field introduced to the pair contact process with diffusion. Phys Rev E 2018; 96:032113. [PMID: 29347005 DOI: 10.1103/physreve.96.032113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 11/07/2022]
Abstract
The one-dimensional pair contact process with diffusion (PCPD), an interacting particle system with diffusion, pair annihilation, and creation by pairs, has defied consensus about the universality class to which it belongs. An argument by Hinrichsen [Physica A 361, 457 (2006)PHYADX0378-437110.1016/j.physa.2005.06.101] claims that freely diffusing particles in the PCPD should play the same role as frozen particles when it comes to the critical behavior. Therefore, the PCPD is claimed to have the same critical phenomena as a model with infinitely many absorbing states that belongs to the directed percolation (DP) universality class. To investigate if diffusing particles are really indistinguishable from frozen particles in the sense of the renormalization group, we study numerically a variation of the PCPD by introducing a nonorder field associated with infinitely many absorbing states. We find that a crossover from the PCPD to DP occurs due to the nonorder field. By studying a similar model, we exclude the possibility that the mere introduction of a nonorder field to one model can entail a nontrivial crossover to another model in the same universality class, thus we attribute the observed crossover to the difference of the universality class of the PCPD from the DP class.
Collapse
Affiliation(s)
- Su-Chan Park
- Department of Physics, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
3
|
Park SC. Critical decay exponent of the pair contact process with diffusion. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052115. [PMID: 25493748 DOI: 10.1103/physreve.90.052115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Indexed: 06/04/2023]
Abstract
We investigate the one-dimensional pair contact process with diffusion (PCPD) by extensive Monte Carlo simulations, mainly focusing on the critical density decay exponent δ. To obtain an accurate estimate of δ, we first find the strength of corrections to scaling using the recently introduced method [S.-C. Park. J. Korean Phys. Soc. 62, 469 (2013)KPSJAS0374-488410.3938/jkps.62.469]. For small diffusion rate (d≤0.5), the leading corrections-to-scaling term is found to be ∼t^{-0.15}, whereas for large diffusion rate (d=0.95) it is found to be ∼t^{-0.5}. After finding the strength of corrections to scaling, effective exponents are systematically analyzed to conclude that the value of critical decay exponent δ is 0.173(3) irrespective of d. This value should be compared with the critical decay exponent of the directed percolation, 0.1595. In addition, we study two types of crossover. At d=0, the phase boundary is discontinuous and the crossover from the pair contact process to the PCPD is found to be described by the crossover exponent ϕ=2.6(1). We claim that the discontinuity of the phase boundary cannot be consistent with the theoretical argument supporting the hypothesis that the PCPD should belong to the DP. At d=1, the crossover from the mean field PCPD to the PCPD is described by ϕ=2 which is argued to be exact.
Collapse
Affiliation(s)
- Su-Chan Park
- Department of Physics, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| |
Collapse
|
4
|
Park SC, Park H. Crossover from the parity-conserving pair contact process with diffusion to other universality classes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:051130. [PMID: 19518439 DOI: 10.1103/physreve.79.051130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Indexed: 05/27/2023]
Abstract
The pair contact process with diffusion (PCPD) with modulo 2 conservation (PCPD2) [ 2A-->4A , 2A-->0 ] is studied in one dimension, focused on the crossover to other well established universality classes: the directed Ising (DI) and the directed percolation (DP). First, we show that the PCPD2 shares the critical behaviors with the PCPD, both with and without directional bias. Second, the crossover from the PCPD2 to the DI is studied by including a parity-conserving single-particle process (A-->3A) . We find the crossover exponent 1/varphi_{1}=0.57(3) , which is argued to be identical to that of the PCPD-to-DP crossover by adding A-->2A . This suggests that the PCPD universality class has a well-defined fixed point distinct from the DP. Third, we study the crossover from a hybrid-type reaction-diffusion process belonging to the DP [ 3A-->5A , 2A-->0 ] to the DI by adding A-->3A . We find 1/varphi_{2}=0.73(4) for the DP-to-DI crossover. The inequality of varphi_{1} and varphi_{2} further supports the non-DP nature of the PCPD scaling. Finally, we introduce a symmetry-breaking field in the dual spin language to study the crossover from the PCPD2 to the DP. We find 1/varphi_{3}=1.23(10) , which is associated with a new independent route from the PCPD to the DP.
Collapse
Affiliation(s)
- Su-Chan Park
- Institut für Theoretische Physik, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
| | | |
Collapse
|
5
|
Park SC, Park H. Three different routes from the directed Ising to the directed percolation class. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:041128. [PMID: 18999400 DOI: 10.1103/physreve.78.041128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Indexed: 05/27/2023]
Abstract
The scaling nature of absorbing critical phenomena is well understood for the directed percolation (DP) and the directed Ising (DI) systems. However, a full analysis of the crossover behavior is still lacking, which is of our interest in this study. In one dimension, we find three different routes from the DI to the DP classes by introducing a symmetry-breaking field (SB), breaking a modulo 2 conservation (CB), or making channels connecting two equivalent absorbing states (CC). Each route can be characterized by a crossover exponent, which is found numerically as phi=2.1+/-0.1 (SB), 4.6+/-0.2 (CB), and 2.9+/-0.1 (CC), respectively. The difference between the SB and CB crossover can be understood easily in the domain wall language, while the CC crossover involves an additional critical singularity in the auxiliary field density with the memory effect to identify itself independent.
Collapse
Affiliation(s)
- Su-Chan Park
- Institut für Theoretische Physik, Universität zu Köln, Zülpicher Strasse 77, Köln, Germany
| | | |
Collapse
|
6
|
Park SC, Park H. Nontrivial critical crossover between directed percolation models: effect of infinitely many absorbing states. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:051123. [PMID: 18233639 DOI: 10.1103/physreve.76.051123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Indexed: 05/25/2023]
Abstract
At nonequilibrium phase transitions into absorbing (trapped) states, it is well known that the directed percolation (DP) critical scaling is shared by two classes of models with a single (S) absorbing state and with infinitely many (IM) absorbing states. We study the crossover behavior in one dimension, arising from a considerable reduction of the number of absorbing states (typically from the IM-type to the S -type DP models) by following two different (excitatory or inhibitory) routes which make the auxiliary field density abruptly jump at the crossover. Along the excitatory route, the system becomes overly activated even for an infinitesimal perturbation and its crossover becomes discontinuous. Along the inhibitory route, we find a continuous crossover with universal crossover exponent phi approximately=1.78(6), which is argued to be equal to nu||, the relaxation time exponent of the DP universality class on a general footing. This conjecture is also confirmed in the case of the directed Ising (parity-conserving) class. Finally, we discuss the effect of diffusion on the IM-type models and suggest an argument why diffusive models with some hybrid-type reactions should belong to the DP class.
Collapse
Affiliation(s)
- Su-Chan Park
- Institut für Theoretische Physik, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany
| | | |
Collapse
|
7
|
Elgart V, Kamenev A. Classification of phase transitions in reaction-diffusion models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:041101. [PMID: 17155016 DOI: 10.1103/physreve.74.041101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/26/2006] [Indexed: 05/12/2023]
Abstract
Equilibrium phase transitions are associated with rearrangements of minima of a (Lagrangian) potential. Treatment of nonequilibrium systems requires doubling of degrees of freedom, which may be often interpreted as a transition from the "coordinate"- to the "phase"-space representation. As a result, one has to deal with the Hamiltonian formulation of the field theory instead of the Lagrangian one. We suggest a classification scheme of phase transitions in reaction-diffusion models based on the topology of the phase portraits of corresponding Hamiltonians. In models with an absorbing state such a topology is fully determined by intersecting curves of zero "energy." We identify four families of topologically distinct classes of phase portraits stable upon renormalization group transformations.
Collapse
Affiliation(s)
- Vlad Elgart
- Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
8
|
Park SC, Park H. Crossover from the pair contact process with diffusion to directed percolation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:025105. [PMID: 16605382 DOI: 10.1103/physreve.73.025105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Indexed: 05/08/2023]
Abstract
Crossover behaviors from the pair contact process with diffusion (PCPD) and the driven PCPD (DPCPD) to the directed percolation (DP) are studied in one dimension by introducing a single particle annihilation and/or branching dynamics. The crossover exponents phi are estimated numerically as 1/phi approximately 0.58 +/- 0.03 for the PCPD and 1/phi approximately 0.49+/-0.02 for the DPCPD. Nontriviality of the PCPD crossover exponent strongly supports the non-DP nature of the PCPD critical scaling, which is further evidenced by the anomalous critical amplitude scaling near the PCPD point. In addition, we find that the DPCPD crossover is consistent with the mean field prediction of the tricritical DP class as expected.
Collapse
Affiliation(s)
- Su-Chan Park
- School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea
| | | |
Collapse
|
9
|
Park SC. Monte Carlo simulations of bosonic reaction-diffusion systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:036111. [PMID: 16241519 DOI: 10.1103/physreve.72.036111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 03/17/2005] [Indexed: 05/05/2023]
Abstract
An efficient Monte Carlo simulation method for bosonic reaction-diffusion systems which are mainly used in the renormalization group (RG) study is proposed. Using this method, one-dimensional bosonic single species annihilation model is studied and, in turn, the results are compared with RG calculations. The numerical data are consistent with RG predictions. As a second application, a bosonic variant of the pair contact process with diffusion (PCPD) is simulated and shown to share the critical behavior with the PCPD. The invariance under the Galilean transformation of this boson model is also checked and discussion about the invariance in conjunction with other models are in order.
Collapse
Affiliation(s)
- Su-Chan Park
- Korea Institute for Advanced Study, Seoul 130-722, Korea
| |
Collapse
|