1
|
de Mello Gallep C, Robert D. Are cyclic plant and animal behaviours driven by gravimetric mechanical forces? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1093-1103. [PMID: 34727177 PMCID: PMC8866634 DOI: 10.1093/jxb/erab462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 05/13/2023]
Abstract
The celestial mechanics of the Sun, Moon, and Earth dominate the variations in gravitational force that all matter, live or inert, experiences on Earth. Expressed as gravimetric tides, these variations are pervasive and have forever been part of the physical ecology with which organisms evolved. Here, we first offer a brief review of previously proposed explanations that gravimetric tides constitute a tangible and potent force shaping the rhythmic activities of organisms. Through meta-analysis, we then interrogate data from three study cases and show the close association between the omnipresent gravimetric tides and cyclic activity. As exemplified by free-running cyclic locomotor activity in isopods, reproductive effort in coral, and modulation of growth in seedlings, biological rhythms coincide with temporal patterns of the local gravimetric tide. These data reveal that, in the presumed absence of rhythmic cues such as light and temperature, local gravimetric tide is sufficient to entrain cyclic behaviour. The present evidence thus questions the phenomenological significance of so-called free-run experiments.
Collapse
Affiliation(s)
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
2
|
Wortmann FJ, Jones C, Davies TJ, Wortmann G. Perm-waved human hair: a thermorheologically complex shape memory composite. Biophys J 2021; 120:3831-3840. [PMID: 34214523 DOI: 10.1016/j.bpj.2021.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 11/18/2022] Open
Abstract
A "permanent" bent shape can be imposed on a straight human hair by a two-stage reduction/oxidation (perm-waving) process. The process relies on the molecular level on sulfhydryl/disulfide interchange as bond exchange reaction (BER). We expected a well-documented transition temperature around 60°C to be the trigger for the shape memory (SM) process of perm-waved hair. We confirm the existence of the SM process as such and investigate its time and temperature dependence. The results show a two-stage SM behavior, implying two distinct variations of the BER. The model to fit the data contains two fractional, normalized, elastic bending rigidities, which are strictly compensatory. They show Arrhenius-type temperature dependence and a common activation energy (EA) of ∼-12 kJ/mol. The characteristic relaxation time for the first SM process shows little, if any, temperature dependence (EA = -4 ± 2.7 kJ/mol). This is in contrast to the second process (EA = -58 ± 5.5 kJ/mol) but in line with the expected properties of the suggested BERs. None of the parameters shows any sign of the expected trigger transition (∼60°C). We hypothesize that this specific transition occurs only for large tensile deformations, when specific SS bonds in the intermediate filaments of hair are activated. There is thus no specific "trigger" transition for the SM behavior of bent, perm-waved hair.
Collapse
Affiliation(s)
- Franz J Wortmann
- Department of Materials, The University of Manchester, Manchester, United Kingdom.
| | - Celina Jones
- Department of Materials, The University of Manchester, Manchester, United Kingdom
| | - Thomas J Davies
- School of Design, The University of Leeds, Leeds, United Kingdom
| | - Gabriele Wortmann
- Department of Materials, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Calero C, Franzese G. Membranes with different hydration levels: The interface between bound and unbound hydration water. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
|
5
|
Murakami D, Yasuoka K. Molecular dynamics simulation of quasi-two-dimensional water clusters on ice nucleation protein. J Chem Phys 2012; 137:054303. [DOI: 10.1063/1.4739299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Mallamace F, Corsaro C, Baglioni P, Fratini E, Chen SH. The dynamical crossover phenomenon in bulk water, confined water and protein hydration water. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:064103. [PMID: 22277288 DOI: 10.1088/0953-8984/24/6/064103] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We discuss a phenomenon regarding water that was until recently a subject of scientific controversy, i.e. the dynamical crossover from fragile-to-strong glass-forming material, for both bulk and protein hydration water. Such a crossover is characterized by a temperature T(L) at which significant dynamical changes occur, such as violation of the Stokes-Einstein relation and changes of behaviour of homologous transport parameters such as the density relaxation time and the viscosity. In this respect we will consider carefully the dynamic properties of water-protein systems. More precisely, we will study proteins and their hydration water as far as bulk and confined water. In order to clarify the controversy we will discuss in a comparative way many previous and new experimental data that have emerged using different techniques and molecular dynamic simulation (MD). We point out the reasons for the different dynamical findings from the use of different experimental techniques.
Collapse
Affiliation(s)
- Francesco Mallamace
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
7
|
Mazza MG, Stokely K, Pagnotta SE, Bruni F, Stanley HE, Franzese G. More than one dynamic crossover in protein hydration water. Proc Natl Acad Sci U S A 2011; 108:19873-8. [PMID: 22135473 PMCID: PMC3250162 DOI: 10.1073/pnas.1104299108] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies of liquid water in its supercooled region have helped us better understand the structure and behavior of water. Bulk water freezes at its homogeneous nucleation temperature (approximately 235 K), but protein hydration water avoids this crystallization because each water molecule binds to a protein. Here, we study the dynamics of the hydrogen bond (HB) network of a percolating layer of water molecules and compare the measurements of a hydrated globular protein with the results of a coarse-grained model that successfully reproduces the properties of hydration water. Using dielectric spectroscopy, we measure the temperature dependence of the relaxation time of proton charge fluctuations. These fluctuations are associated with the dynamics of the HB network of water molecules adsorbed on the protein surface. Using Monte Carlo simulations and mean-field calculations, we study the dynamics and thermodynamics of the model. Both experimental and model analyses are consistent with the interesting possibility of two dynamic crossovers, (i) at approximately 252 K and (ii) at approximately 181 K. Because the experiments agree with the model, we can relate the two crossovers to the presence at ambient pressure of two specific heat maxima. The first is caused by fluctuations in the HB formation, and the second, at a lower temperature, is due to the cooperative reordering of the HB network.
Collapse
Affiliation(s)
- Marco G. Mazza
- Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215
| | - Kevin Stokely
- Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215
| | - Sara E. Pagnotta
- Centro de Fisica de Materiales (Consejo Superior de Investigaciones Cientificas–Universidad del País Vasco/Euskal Herriko Unibertsitatea), Materials Physics Center, 20018 Donostia-San Sebastian, Spain
| | - Fabio Bruni
- Dipartimento di Fisica “E. Amaldi”, Università di Roma Tre, 00146 Rome, Italy; and
| | - H. Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215
| | - Giancarlo Franzese
- Departament de Física Fonamental, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Chu XQ, Ehlers G, Mamontov E, Podlesnyak A, Wang W, Wesolowski DJ. Diffusion processes in water on oxide surfaces: quasielastic neutron scattering study of hydration water in rutile nanopowder. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031505. [PMID: 22060377 DOI: 10.1103/physreve.84.031505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/04/2011] [Indexed: 05/31/2023]
Abstract
Quasielastic neutron scattering (QENS) was used to investigate the diffusion dynamics of hydration water on the surface of rutile (TiO(2)) nanopowder. The dynamics measurements utilizing two inelastic instruments, a backscattering spectrometer and a disk chopper spectrometer, probed the fast, intermediate, and slow motions of the water molecules on the time scale of picoseconds to more than a nanosecond. We employed a model-independent analysis of the data collected at each value of the scattering momentum transfer to investigate the temperature dependence of several diffusion components. All of the probed components were present in the studied temperature range of 230-320 K, providing, at a first sight, no evidence of discontinuity in the hydration water dynamics. However, a qualitative change in the elastic scattering between 240 and 250 K suggested a surface freezing-melting transition, when the motions that were localized at lower temperatures became delocalized at higher temperatures. On the basis of our previous molecular dynamics simulations of this system, we argue that interpretation of QENS data from such a complex interfacial system requires at least qualitative input from simulations, particularly when comparing results from spectrometers with very different energy resolutions and dynamic ranges.
Collapse
Affiliation(s)
- Xiang-qiang Chu
- Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | | | | | | | | |
Collapse
|
9
|
Pagnotta SE, Cerveny S, Alegría A, Colmenero J. The dynamical behavior of hydrated glutathione: a model for protein–water interactions. Phys Chem Chem Phys 2010; 12:10512-7. [DOI: 10.1039/c003493b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Schirò G, Cupane A, Vitrano E, Bruni F. Dielectric Relaxations in Confined Hydrated Myoglobin. J Phys Chem B 2009; 113:9606-13. [DOI: 10.1021/jp901420r] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giorgio Schirò
- CNISM and Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Palermo, Italy, and CNISM and Dipartimento di Fisica “E. Amaldi”, Università di Roma Tre, Rome, Italy
| | - Antonio Cupane
- CNISM and Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Palermo, Italy, and CNISM and Dipartimento di Fisica “E. Amaldi”, Università di Roma Tre, Rome, Italy
| | - Eugenio Vitrano
- CNISM and Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Palermo, Italy, and CNISM and Dipartimento di Fisica “E. Amaldi”, Università di Roma Tre, Rome, Italy
| | - Fabio Bruni
- CNISM and Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Palermo, Italy, and CNISM and Dipartimento di Fisica “E. Amaldi”, Università di Roma Tre, Rome, Italy
| |
Collapse
|
11
|
Jansson H, Swenson J. Dynamical changes of hemoglobin and its surrounding water during thermal denaturation as studied by quasielastic neutron scattering and temperature modulated differential scanning calorimetry. J Chem Phys 2008; 128:245104. [DOI: 10.1063/1.2943199] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
12
|
Oleinikova A, Smolin N, Brovchenko I. Origin of the dynamic transition upon pressurization of crystalline proteins. J Phys Chem B 2007; 110:19619-24. [PMID: 17004829 DOI: 10.1021/jp0629590] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We study the role of hydration water in the dynamic transition of low-hydrated proteins upon pressurization found recently (Meinhold, L.; Smith, J. C. Phys. Rev. E 2005, 72, 061908). Clustering and percolation of water in the hydration shells of protein molecules in crystalline Staphylococcal nuclease are analyzed at various pressures. The number of water molecules in the hydration shell increases and the hydrogen-bonded network of hydration water spans with increasing pressure. The dynamic transition of protein occurs when the spanning water network exists with the probability of about 50% and hydration water shows large density fluctuations. Formation of a spanning water network upon pressurization promotes protein dynamics as in the case of the dynamic transition with increasing hydration. Properties of hydration water in various thermodynamic states and their influence on biological function are discussed.
Collapse
Affiliation(s)
- Alla Oleinikova
- Department of Physical Chemistry, University of Dortmund, Otto-Hahn-Strasse 6, Dortmund D-44227, Germany.
| | | | | |
Collapse
|
13
|
Senesi R, Pietropaolo A, Bocedi A, Pagnotta SE, Bruni F. Proton momentum distribution in a protein hydration shell. PHYSICAL REVIEW LETTERS 2007; 98:138102. [PMID: 17501242 DOI: 10.1103/physrevlett.98.138102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Indexed: 05/15/2023]
Abstract
The momentum distribution of protons in the hydration shell of a globular protein has been measured through deep inelastic neutron scattering at 180 and 290 K, below and above the crossover temperature Tc=1.23Tg, where Tg=219 K is the glass transition temperature. It is found that the mean kinetic energy of the water hydrogens shows no temperature dependence, but the measurements are accurate enough to indicate a sensible change of momentum distribution and effective potential felt by protons, compatible with the transition from a single to a double potential well. This could support the presence of tunneling effects even at room temperature, playing an important role in biological function.
Collapse
Affiliation(s)
- R Senesi
- Dipartimento di Fisica and Centro NAST, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|