1
|
Hathcock D, Dillavou S, Hanlan JM, Durian DJ, Tu Y. Stochastic dynamics of granular hopper flows: A configurational mode controls the stability of clogs. Phys Rev E 2025; 111:L023404. [PMID: 40103127 DOI: 10.1103/physreve.111.l023404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
Granular flows in small-outlet hoppers exhibit several characteristic but poorly understood behaviors: temporary clogs (pauses) where flow stops before later spontaneously restarting, permanent clogs that last indefinitely, and non-Gaussian, nonmonotonic flow-rate statistics. These aspects have been studied independently, but a model of hopper flow that explains all three has not been formulated. Here, we introduce a phenomenological model that provides a unifying dynamical mechanism for all three behaviors: coupling between the flow rate and a hidden mode that controls the stability of clogs. In the theory, flow rate evolves according to Langevin dynamics with multiplicative noise and an absorbing state at zero flow, conditional on the hidden mode. The model fully reproduces the statistics of pause and clog events of a large (>40000 flows) experimental dataset, including nonexponentially distributed clogging times and non-Gaussian flow rate distribution, and explains the stretched-exponential growth of the average clogging time with outlet size. Further, we identify the physical nature of the hidden mode in microscopic configurational features, including size and smoothness of the static arch structure formed during pauses and clogs. Our work provides a unifying framework for several poorly understood clogging phenomena, and suggests numerous new paths toward further understanding of this complex system.
Collapse
Affiliation(s)
- David Hathcock
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Sam Dillavou
- University of Pennsylvania, Department of Physics & Astronomy, Philadelphia, Pennsylvania 19104, USA
| | - Jesse M Hanlan
- University of Pennsylvania, Department of Physics & Astronomy, Philadelphia, Pennsylvania 19104, USA
| | - Douglas J Durian
- University of Pennsylvania, Department of Physics & Astronomy, Philadelphia, Pennsylvania 19104, USA
| | - Yuhai Tu
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| |
Collapse
|
2
|
Hanif MA, van der Meer D. Flow dynamics of different particle shapes in a rectangular silo. Phys Rev E 2025; 111:025416. [PMID: 40103145 DOI: 10.1103/physreve.111.025416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025]
Abstract
The present work investigates the effect of using six different particle shapes of equal volume on the discharge process of a rectangular silo with adjustable width, equipped with a flat bottom orifice opening of varying size. We find that the discharge rate decreases with the increasing aspect ratio of the particles for both lentil-shaped (oblate) and rice-shaped (prolate ellipsoidal) particles and macaroni-shaped particles show the lowest discharge rate among all the particle shapes. In addition, the silo width influences the discharge in such a way that the rates at which different particle shapes flow out from the system become more distinguishable at smaller silo widths. We observe that the velocity profile near the orifice opening becomes narrower and less sharp with increasing aspect ratio for both lentil- and rice-shaped particles. Moreover, the silo width does not have a significant influence on the velocity profile very near to the orifice, but, its influence becomes more noticeable with increasing height within the silo.
Collapse
|
3
|
Gans A, Dalloz-Dubrujeaud B, Nicolas M, Aussillous P. Discharge Flow of a Cohesive Granular Media from a Silo. PHYSICAL REVIEW LETTERS 2024; 133:238201. [PMID: 39714693 DOI: 10.1103/physrevlett.133.238201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/04/2024] [Accepted: 10/25/2024] [Indexed: 12/24/2024]
Abstract
Cohesion can dramatically affect the flow of granular media. In this Letter, thanks to a cohesion-controlled granular material, we propose to investigate experimentally the effect of the cohesion on the discharge from a silo. We use two geometries, a cylindrical silo and a thin rectangular silo, with an adjustable bottom to control the size of the orifice. Similarly to cohesionless granular material, the mass flow rate is mostly controlled by the diameter of the outlet D, however, we observe that the cohesion tends to decrease the flow rate. We show that this effect is controlled by a cohesive length, based on the cohesive yield stress and gravity acceleration, which acts as an effective particle size. This cohesive length is also found to control the onset of flow.
Collapse
|
4
|
Hanif MA, van der Meer D, Maza D. Discharge of rice-shaped particles from a monolayer flat-bottom silo. Phys Rev E 2024; 109:064906. [PMID: 39020993 DOI: 10.1103/physreve.109.064906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/24/2024] [Indexed: 07/20/2024]
Abstract
In this work, we performed experiments regarding the outflow of spheres and two different types of rice-shaped particles in a quasi-two-dimensional monolayer silo with a flat bottom. We investigate the velocity and solid fraction profiles at the orifice and test whether the profiles for nonspherical particles have similar self-similar properties as in the spherical case. We find that the magnitude and shape of the velocity profiles for all three particle types are in a similar range. In contrast, the solid fraction at the orifice has a dome-shaped profile for both rice particles, whereas the profile for spherical particles is rather flat. The discharge rate determined from the velocity and solid fraction profiles describes the independently measured experimental discharge rate very well for all three investigated particle types.
Collapse
|
5
|
Ortega-Roano E, Souzy M, Weinhart T, van der Meer D, Marin A. Clogging of noncohesive suspensions through constrictions using an efficient discrete particle solver with unresolved fluid flow. Phys Rev E 2023; 108:064905. [PMID: 38243512 DOI: 10.1103/physreve.108.064905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/04/2023] [Indexed: 01/21/2024]
Abstract
When objects are forced to flow through constrictions their transport can be frustrated temporarily or permanently due to the formation of arches in the region of the bottleneck. While such systems have been intensively studied in the case of solid particles in a gas phase being forced by gravitational forces, the case of solid particles suspended in a liquid phase, forced by the liquid itself, has received much less attention. In this case, the influence of the liquid flow on the transport efficiency is not well understood yet, leading to several apparently trivial but yet unanswered questions, e.g., would an increase of the liquid flow improve the transport of particles or worsen it? Although some experimental data are already available, they lack enough detail to give a complete answer to such a question. Numerical models would be needed to scrutinize the system deeper. In this paper, we study this system making use of an advanced discrete particle solver (mercurydpm) and an approximated numerical model for the liquid drag and compare the results with experimental data.
Collapse
Affiliation(s)
- Edgar Ortega-Roano
- Department of Physics of Fluids, University of Twente, 7522NB, Enschede, The Netherlands
| | - Mathieu Souzy
- INRAE, Aix-Marseille Université, UMR RECOVER, 13182 Aix-en-Provence, France
| | - Thomas Weinhart
- Multi Scale Mechanics, Department of Thermal and Fluid Engineering, University of Twente, 7522NB, Enschede, The Netherlands
| | - Devaraj van der Meer
- Department of Physics of Fluids, University of Twente, 7522NB, Enschede, The Netherlands
| | - Alvaro Marin
- Department of Physics of Fluids, University of Twente, 7522NB, Enschede, The Netherlands
| |
Collapse
|
6
|
Fan B, Zuriguel I, Dijksman JA, van der Gucht J, Börzsönyi T. Elongated particles discharged with a conveyor belt in a two-dimensional silo. Phys Rev E 2023; 108:044902. [PMID: 37978696 DOI: 10.1103/physreve.108.044902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
The flow of elliptical particles out of a two-dimensional silo when extracted with a conveyor belt is analyzed experimentally. The conveyor belt-placed directly below the silo outlet-reduces the flow rate, increases the size of the stagnant zone, and it has a very strong influence on the relative velocity fluctuations as they strongly increase everywhere in the silo with decreasing belt speed. In other words, instead of slower but smooth flow, flow reduction by belt leads to intermittent flow. Interestingly, we show that this intermittency correlates with a strong reduction of the orientational order of the particles at the orifice region. Moreover, we observe that the average orientation of the grains passing through the outlet is modified when they are extracted with the belt, a feature that becomes more evident for large orifices.
Collapse
Affiliation(s)
- Bo Fan
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Iker Zuriguel
- Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - Joshua A Dijksman
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tamás Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
7
|
Lopez-Fidalgo J, May C, Moler JA. Designing experiments for estimating an appropriate outlet size for a silo type problem. Ann Appl Stat 2023. [DOI: 10.1214/22-aoas1644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jesus Lopez-Fidalgo
- Instituto de Ciencia de los Datos e Inteligencia Artificial, Universidad de Navarra
| | - Caterina May
- Dipartimento DiSEI, Università degli Studi del Piemonte Orientale
| | - Jose Antonio Moler
- Departamento de Estadística, Informática y Matemáticas, Universidad Pública de Navarra
| |
Collapse
|
8
|
Wiącek J, Horabik J, Molenda M, Parafiniuk P, Bańda M, Stasiak M. Converging orifice used to control the discharge rate of spherical particles from a flat floor silo. Sci Rep 2023; 13:669. [PMID: 36635371 PMCID: PMC9837167 DOI: 10.1038/s41598-023-27431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
The effect of the converging orifice geometry in a model silo on the discharge rate of monosized spherical particles was studied experimentally and numerically. The cylindrical container was equipped with interchangeable inserts with converging discharge orifices of various upper diameters in the upper base and a constant lower diameter in the lower base. Plastic PLA beads and agricultural granular materials: wheat, rapeseeds, and linseeds were tested. A series of discrete element method simulations corresponding to the performed experiments was conducted with a largely extended set of experimental discharge conditions. In the case of the constant thickness of the insert, the discharge rate initially increased with an increase in the half cone angle of the converging orifice and then the tendency reversed. In the majority of cases, the discharge rate through the converging orifice was higher than through the hopper with the same orifice diameter.
Collapse
Affiliation(s)
- Joanna Wiącek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - Józef Horabik
- grid.413454.30000 0001 1958 0162Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Marek Molenda
- grid.413454.30000 0001 1958 0162Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Piotr Parafiniuk
- grid.413454.30000 0001 1958 0162Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Maciej Bańda
- grid.413454.30000 0001 1958 0162Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Mateusz Stasiak
- grid.413454.30000 0001 1958 0162Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
9
|
Axial segregation of granular mixtures in laterally shaken multi-trapezium channels. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Feng Y, Wang C, Wang P, Qin D, Li Y. Influence of grain discharge rate on the normal force of arch. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:80. [PMID: 36169745 DOI: 10.1140/epje/s10189-022-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The arch stress of grain particles during the discharge of the silo is very important to the safety of the silo. At present, most silos adopt the standard discharge port size. To improve the discharge efficiency, it is generally achieved by changing the angle of the discharge port. In this article, an improved silo model is used to study the discharge experiments in the silo with five inclination angles of the discharge port, and analyze the normal force distribution of the wheat grains at the arch, comparing the normal force distribution under five different discharge rates. From the results given, when the angle of the discharge port is 45°, the area where the normal force among particles is larger is wider. At other flow rates, increasing the flow rate can shorten the arching period. During the arching cycle, the normal force among particles in the center area of the silo at the same height is smaller than at the silo wall and is negatively correlated with the discharge rate. In addition, the normal force on the silo wall gradually decreases with the increase in the discharge rate.
Collapse
Affiliation(s)
- Yong Feng
- College of Civil Engineering, Henan University of Technology, Zhengzhou, 450000, Henan, China
| | - Chao Wang
- College of Civil Engineering, Henan University of Technology, Zhengzhou, 450000, Henan, China.
| | - Peryan Wang
- College of Civil Engineering, Henan University of Technology, Zhengzhou, 450000, Henan, China
| | - Dajing Qin
- College of Civil Engineering, Henan University of Technology, Zhengzhou, 450000, Henan, China
| | - Yuan Li
- College of Civil Engineering, Henan University of Technology, Zhengzhou, 450000, Henan, China
| |
Collapse
|
11
|
Vani N, Escudier S, Sauret A. Influence of the solid fraction on the clogging by bridging of suspensions in constricted channels. SOFT MATTER 2022; 18:6987-6997. [PMID: 36069637 DOI: 10.1039/d2sm00962e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Clogging can occur whenever a suspension of particles flows through a confined system. The formation of clogs is often correlated to a reduction in the cross-section of the channel. In this study, we consider the clogging by bridging, i.e., through the formation of a stable arch of particles at a constriction that hinders the transport of particles downstream of the clog. To characterize the role of the volume fraction of the suspension on the clogging dynamics, we study the flow of particulate suspensions through 3D-printed millifluidic devices. We systematically characterize the bridging of non-Brownian particles in a quasi-bidimensional system in which we directly visualize and track the particles as they flow and form arches at a constriction. We report the conditions for clogging by bridging when varying the constriction width to particle diameter ratio for different concentrations of the particles in suspension. We then discuss our results using a stochastic model to rationalize the influence of solid fraction on the probability of clogging. Understanding the mechanisms and conditions of clog formation is an important step for optimizing engineering design and developing more reliable dispensing systems.
Collapse
Affiliation(s)
- Nathan Vani
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| | - Sacha Escudier
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| | - Alban Sauret
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
12
|
Anderson CJ, Gibson PA, Fernandez-Nieves A. Janssen effect in columns of fire ants. Phys Rev E 2022; 106:L012604. [PMID: 35974623 DOI: 10.1103/physreve.106.l012604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
We study fire-ant columns, an active version of passive granular columns, and find that, despite the inherent activity of the ants and their natural tendency to rearrange, the ants develop force-chain structures that help support the weight of the column. Hence, the apparent mass at the bottom of the column saturates with added mass in a Janssen-like fashion, reminiscent of what is seen in passive-grain columns in wide containers. Activity-induced rearrangements within the column, however, lead to changes in the force-chain structure that slightly reduce the supportive nature of the force-chains over time and to fluctuations in the pressure at the bottom of the column that scale like the law of large numbers. We capture the experimental results in simulations that include not only friction with the walls, but also a fluctuating force that introduces activity and that effectively affects the force-chain structure of the ant collective.
Collapse
Affiliation(s)
- Caleb J Anderson
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA and Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Pryor A Gibson
- Department of Mathematics and Physics, North Carolina Central University, Durham, North Carolina 27707, USA
| | - Alberto Fernandez-Nieves
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain; ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain; Institute for Complex Systems (UBICS), University of Barcelona, 08028 Barcelona, Spain; and School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
13
|
Fractals for the Sustainable Design of Engineered Particulate Systems. SUSTAINABILITY 2022. [DOI: 10.3390/su14127287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The engineering properties of particulate materials are the collective manifestation of interactions among their constituent particles and are structures within which particles adopt their spatial arrangement. For the first time in the literature, this paper employs an extended concept of ‘fractals’ to show that materials constituting particles of a certain size can be rationalized in three universal fractals. Within each fractal, materials build repeatable, reproducible, and predictable traits, and exhibit the stress-strain behaviors of nondifferentiable, self-similar trajectories. We present experimental evidence for such repeatable traits by subjecting six different particulate materials to static undrained isotropic, static undrained anisotropic, and cyclic undrained isotropic stresses. This paper shows that universal fractals are associated with fractal structures; herein, we explore the matters that influence their spatial arrangement. Within the context of sustainable design, ways of engineering natural particulate systems to improve a product’s physical and hydromechanical properties are already well established. In this review, a novel extended concept of fractals is introduced to inform the biomimetic design of particulate systems, to show how biomimicry can benefit in preserving general behavioral traits, and how biomimicry can offer predicated forms, thereby enhancing the design efficiency. To pursue such an ideal, processes that lead to the engineering of natural materials should not compromise their loyalty to the parent universal fractal.
Collapse
|
14
|
Alborzi S, Clark BG, Hashmi SM. Soft particles facilitate flow of rigid particles in a 2D hopper. SOFT MATTER 2022; 18:4127-4135. [PMID: 35582943 DOI: 10.1039/d2sm00318j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The flow of granular materials through narrow openings governs flow and process efficiency in a variety of industrial settings. As the use of soft particles and other soft micro-materials becomes more widespread in consumer products, we seek to understand characteristics of granular flows beyond powder flows. We study clogging through a 2D hopper in systems consisting of a combination of soft and rigid particles of different sizes and mixing fractions. Our experimental results show that soft particles play a lubricating role in the flow of rigid spheres due to their deformability and slick surface, but the size of rigid particles influences clogging more than the size of soft ones. We simulate our results using a modification of the Durian bubble model to accommodate mixtures of particles of different softness. Without any adjustable parameters, the simulation results capture the clogging probability of soft-rigid particle mixtures through a 2D hopper.
Collapse
Affiliation(s)
- Saeed Alborzi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Benjamin G Clark
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Sara M Hashmi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Arévalo R. Collisional regime during the discharge of a two-dimensional silo. Phys Rev E 2022; 105:044901. [PMID: 35590608 DOI: 10.1103/physreve.105.044901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
The present work reports an investigation into the collisional dynamics of particles in the vicinity of the outlet of a two-dimensional silo using molecular dynamics simulations. Most studies on this granular system focus in the bulk of the medium. In this region, contacts are permanent or long-lived, so continuous approximations are able to yield results for velocity distributions or mass flow. Close to the exit, however, the density of the medium decreases and contacts are instantaneous. Thus, the collisional nature of the dynamics becomes significant, warranting a dedicated investigation as carried out in this work. More interesting, the vicinity of the outlet is the region where the arches that block the flow for small apertures are formed. It is found that the transition from the clogging regime (at small apertures) to the continuous flow regime is smooth in collisional variables. Furthermore, the dynamics of particles as reflected by the distributions of the velocities is as well unaffected. This result implies that there is no critical outlet size that separates both regimes, as had been proposed in the literature. Instead, the results achieved support the alternative picture in which a clog is possible for any outlet size.
Collapse
Affiliation(s)
- Roberto Arévalo
- Simulation of Industrial Assets and Processes, Research Centre for Energy Resources and Consumption (CIRCE), Avenue Ranillas 3D, 1st floor, 50018 Zaragoza, Spain
| |
Collapse
|
16
|
Liu Y, Marquardt J, Peng S, Ge L, Gui N, Yang X, Tu J, Jiang S, Kim S. Neural network prediction of residence time distribution for quasi-2D pebble flow. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Viot P, Page G, Barré C, Talbot J. Weak clogging in constricted channel flow. Phys Rev E 2022; 105:014604. [PMID: 35193281 DOI: 10.1103/physreve.105.014604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
We investigate simple models of a monodisperse system of soft, frictionless disks flowing through a two-dimensional microchannel in the presence of a single or a double constriction using Brownian dynamics simulation. After a transient time, a stationary state is observed with an increase in particle density before the constriction and a depletion after it. For a constriction width to particle diameter ratio of less than 3, the mean particle velocity is reduced compared to the unimpeded flow and it falls to zero for ratios of less than 1. At low temperatures, the particle mean velocity may vary nonmonotonically with the constriction width. The associated intermittent behavior is due to the formation of small arches of particles with a finite lifetime. The distribution of the interparticle exit times rises rapidly at short times followed by an exponential decay with a large characteristic time, while the cascade size distribution displays prominent peaks for specific cluster sizes. Although the dependence of the mean velocity on the separation of two constrictions is not simple, the mean flow velocity of a system with a single constriction provides an upper envelope for the system with two constrictions. We also examine the orientation of the leading pair of particles in front of the constriction(s). With a single constriction in the intermittent regime, there is a strong preference for the leading pair to be orientated perpendicular to the flow. When two constrictions are present, orientations parallel to the flow are much more likely at the second constriction.
Collapse
Affiliation(s)
- Pascal Viot
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS UMR 7600, 4, place Jussieu, 75005 Paris, France
| | - Gregory Page
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS UMR 7600, 4, place Jussieu, 75005 Paris, France
| | - Chloé Barré
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS UMR 7600, 4, place Jussieu, 75005 Paris, France
| | - Julian Talbot
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS UMR 7600, 4, place Jussieu, 75005 Paris, France
| |
Collapse
|
18
|
Zhang D, Dong S, Guo H, Yang X, Cui L, Liu X. Flow behavior of granular material during funnel and mixed flow discharges: A comparative analysis. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.10.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Liu HK, Shi ZH, Li WF, Liu HF, Wang FC. Asymmetric oscillation of pressurized dense gas-solid jet in a two-dimensional nozzle. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Discharge Flow of Spherical Particles from a Cylindrical Bin: Experiment and DEM Simulations. Processes (Basel) 2021. [DOI: 10.3390/pr9111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of the DEM simulations of the outflow of wooden spheres from a flat-bottomed container was reported, considering the maximum diameter to arrest the flow. Numerical simulations of the discharge process were performed, and the micro-mechanics of the discharged particles were described. The effect of the sliding friction coefficient between particles, rolling friction coefficient, and modulus of elasticity of particles on the clogging process was investigated. The results of the simulations of the mass flow rate of spheres have shown a fairly close agreement with the experimental results. The real particles of wood were not perfectly spherical, their properties were anisotropic, and their frictional properties were non-homogenously distributed on the surface. Nevertheless, these deviations from ideal conditions did not produce a considerable discrepancy in the results. No direct relationship between the interparticle friction and the clogging was found; however, a relationship between the stability of the dome formed at flow arrest and the rolling friction was observed. An increase in Young’s modulus of particles by two orders of magnitude did not affect the clogging process, but a slightly higher probability of clogging was found for softer particles.
Collapse
|
21
|
Caitano R, Guerrero BV, González RER, Zuriguel I, Garcimartín A. Characterization of the Clogging Transition in Vibrated Granular Media. PHYSICAL REVIEW LETTERS 2021; 127:148002. [PMID: 34652198 DOI: 10.1103/physrevlett.127.148002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The existence of a transition from a clogged to an unclogged state has been recently proposed for the flow of macroscopic particles through bottlenecks in systems as diverse as colloidal suspensions, granular matter, or live beings. Here, we experimentally demonstrate that, for vibrated granular media, such a transition genuinely exists, and we characterize it as a function of the outlet size and vibration intensity. We confirm the suitability of the "flowing parameter" as the order parameter, and we find out that the rescaled maximum acceleration of the system should be replaced as the control parameter by a dimensionless velocity that can be seen as the square root of the ratio between kinetic and potential energy. In all the investigated scenarios, we observe that, for a critical value of this control parameter S_{c}, there seems to be a continuous transition to an unclogged state. The data can be rescaled with this critical value, which, as expected, decreases with the orifice size D. This leads to a phase diagram in the S-D plane in which clogging appears as a concave surface.
Collapse
Affiliation(s)
- R Caitano
- Depto. de Física y Mat. Apl., Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - B V Guerrero
- Depto. de Física y Mat. Apl., Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - R E R González
- Laboratório de Sistemas Complexos e Universais, Departamento de Física, Universidade Federal Rural de Pernambuco, Recife-PE, CEP 52171-900, Brasil
| | - I Zuriguel
- Depto. de Física y Mat. Apl., Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - A Garcimartín
- Depto. de Física y Mat. Apl., Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| |
Collapse
|
22
|
Li Z, Yang H, Sun Z, Espinoza DN, Balhoff MT. A Probability-Based Pore Network Model of Particle Jamming in Porous Media. Transp Porous Media 2021. [DOI: 10.1007/s11242-021-01673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Hsu CP, Baysal HE, Wirenborn G, Mårtensson G, Prahl Wittberg L, Isa L. Roughness-dependent clogging of particle suspensions flowing into a constriction. SOFT MATTER 2021; 17:7252-7259. [PMID: 34318863 DOI: 10.1039/d1sm00738f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
When concentrated particle suspensions flow into a constricting channel, the suspended particles may either smoothly flow through the constriction or jam and clog the channel. These clogging events are typically detrimental to technological processes, such as in the printing of dense pastes or in filtration, but can also be exploited in micro-separation applications. Many studies have to date focused on important parameters influencing the occurrence of clogs, such as flow velocity, particle concentration, and channel geometry. However, the investigation of the role played by the particle surface properties has surprisingly received little attention so far. Here, we study the effect of surface roughness on the clogging of suspensions of silica particles under pressure-driven flows along a microchannel presenting a constriction. We synthesize micron-sized particles with uniform surface chemistry and tunable roughness and determine the occurrence of clogging events as a function of velocity and volume fraction for a given surface topography. Our results show that there is a clear correlation between surface roughness and flow rate, indicating that rougher particles are more likely to jam at the constriction for slower flows. These findings identify surface roughness as an essential parameter to consider in the formulation of particulate suspensions for applications where clogging plays an important role.
Collapse
Affiliation(s)
- Chiao-Peng Hsu
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
24
|
Fan T, Liu M, Ma H, Liu B, Shao Y, Zhao Y. Investigation of the vibrating feeding system for sphericity separation of coated fuel particles using DEM. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.01.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Yu QC, Zheng N, Shi QF. Clogging of granular materials in a horizontal hopper: Effect of outlet size, hopper angle, and driving velocity. Phys Rev E 2021; 103:052902. [PMID: 34134195 DOI: 10.1103/physreve.103.052902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Due to the independence of the driving velocity and outlet size, it is possible to isolate geometrical and kinematic contributions to clogging in two-dimensional horizontal flow in a hopper driven by a conveyor belt. We experimentally investigate the geometric (outlet size and hopper angle) and kinematic effects (driving velocity) on the clogging in such a horizontal flow. Based on quantitative measurements and analysis of the avalanche size, blocking probability of a particle at the outlet, and other parameters, we show that the geometric factors can more effectively affect clogging. In addition, we find that the clogging tends to be alleviated with the increases of the driving velocity, suggesting a possible "fast is fast" behavior within a wide range of driving velocity. We borrow and modify a model from clogging in gravity-driven hoppers, which can accurately describe the shape of the clogging probability function in the conveyor belt driven flow, suggesting that these two systems could share some mechanisms for clogging.
Collapse
Affiliation(s)
- Quan-Chun Yu
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Ning Zheng
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Qing-Fan Shi
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
26
|
Wang J, Fan B, Pongó T, Harth K, Trittel T, Stannarius R, Illig M, Börzsönyi T, Cruz Hidalgo R. Silo discharge of mixtures of soft and rigid grains. SOFT MATTER 2021; 17:4282-4295. [PMID: 33688878 DOI: 10.1039/d0sm01887b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We study the outflow dynamics and clogging phenomena of mixtures of soft, elastic low-friction spherical grains and hard frictional spheres of similar size in a quasi-two-dimensional (2D) silo with narrow orifice at the bottom. Previous work has demonstrated the crucial influence of elasticity and friction on silo discharge. We show that the addition of small amounts, even as low as 5%, of hard grains to an ensemble of soft, low-friction grains already has significant consequences. The mixtures allow a direct comparison of the probabilities of the different types of particles to clog the orifice. We analyze these probabilities for the hard, frictional and the soft, slippery grains on the basis of their participation in the blocking arches, and compare outflow velocities and durations of non-permanent clogs for different compositions of the mixtures. Experimental results are compared with numerical simulations. The latter strongly suggest a significant influence of the inter-species particle friction.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Physics, Otto von Guericke University, Department of Nonlinear Phenomena, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Bo Fan
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P. O. Box 49, H-1525 Budapest, Hungary and Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, The Netherlands
| | - Tivadar Pongó
- Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - Kirsten Harth
- Institute of Physics, Otto von Guericke University, Department of Nonlinear Phenomena, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Torsten Trittel
- Institute of Physics, Otto von Guericke University, Department of Nonlinear Phenomena, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Ralf Stannarius
- Institute of Physics, Otto von Guericke University, Department of Nonlinear Phenomena, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Maja Illig
- Institute of Physics, Otto von Guericke University, Department of Nonlinear Phenomena, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Tamás Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P. O. Box 49, H-1525 Budapest, Hungary
| | - Raúl Cruz Hidalgo
- Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
27
|
Study of Clogging Phenomenon for a Conical Hopper: The Influence of Particle Bed Height and Hopper Angle. SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS 2021. [DOI: 10.1155/2021/9993614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The granular flow is one of the principal issues for the design of pebble bed reactors. Particularly, the clogging phenomenon raises an important issue for pebble bed reactors. In this paper, we conduct experiments and discrete particle simulation of two-dimensional discharge granular flow from a conical hopper, to study the effect of the particle bed height
and hopper angle
on the clogging phenomenon. In general, the clogging probability
increases with height
and starts to saturate when
is larger than a critical value. The experimental result trends are supported by discrete simulations. To understand the underlying physical mechanism, we conduct discrete particle simulations for various
values, focusing on the following parameters: the statistical averaging of the volume fraction, velocity, and contact pressure of particles near the aperture during the discharge. We found that, among all relevant variables, the contact pressure of particles is the main cause of the increasement of J when
increases. An exponential law between the pebble bed
and clogging probability J has been established based on these observations and Janssen model. As for hopper angle
, J shows an almost constant behavior for any rise in
followed by a sudden regression at
. Surprisingly, the effect of
is most obvious for intermediate values of
, where we observe a sharp increasement of clogging probability. The same trend is observed in the two-dimensional discrete simulation results.
Collapse
|
28
|
Madrid MA, Carlevaro CM, Pugnaloni LA, Kuperman M, Bouzat S. Enhancement of the flow of vibrated grains through narrow apertures by addition of small particles. Phys Rev E 2021; 103:L030901. [PMID: 33862726 DOI: 10.1103/physreve.103.l030901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/08/2021] [Indexed: 11/07/2022]
Abstract
We analyze the flow and clogging of circular grains passing through a small aperture under vibration in two dimensions. Via discrete element method simulations, we show that when grains smaller than the original ones are introduced in the system as an additive, the net flow of the original species can be significantly increased. Moreover, there is an optimal radius of the additive particles that maximizes the effect. This finding may constitute the basis for technological applications not only concerning the flow of granular materials but also regarding active matter, including pedestrian evacuation.
Collapse
Affiliation(s)
- Marcos A Madrid
- Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, 59 789, 1900 La Plata, Argentina.,Departamento de Ingeniería Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, 1900 La Plata, Argentina
| | - C Manuel Carlevaro
- Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, 59 789, 1900 La Plata, Argentina.,Departamento de Ingeniería Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, 1900 La Plata, Argentina
| | - Luis A Pugnaloni
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, CONICET, Uruguay 151, 6300 Santa Rosa (La Pampa), Argentina
| | - Marcelo Kuperman
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche (CNEA), 8400 Bariloche, Río Negro, Argentina
| | - Sebastián Bouzat
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche (CNEA), 8400 Bariloche, Río Negro, Argentina
| |
Collapse
|
29
|
Hafez A, Liu Q, Finkbeiner T, Alouhali RA, Moellendick TE, Santamarina JC. The effect of particle shape on discharge and clogging. Sci Rep 2021; 11:3309. [PMID: 33558548 PMCID: PMC7870973 DOI: 10.1038/s41598-021-82744-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/13/2021] [Indexed: 11/17/2022] Open
Abstract
Granular flow is common across different fields from energy resource recovery and mineral processing to grain transport and traffic flow. Migrating particles may jam and form arches that span constrictions and hinder particle flow. Most studies have investigated the migration and clogging of spherical particles, however, natural particles are rarely spherical, but exhibit eccentricity, angularity and roughness. New experiments explore the discharge of cubes, 2D crosses, 3D crosses and spheres under dry conditions and during particle-laden fluid flow. Variables include orifice-to-particle size ratio and solidity. Cubes and 3D crosses are the most prone to clogging because of their ability to interlock or the development of face-to-face contacts that can resist torque and enhance bridging. Spheres arriving to the orifice must be correctly positioned to create stable bridges, while flat 2D crosses orient their longest axes in the direction of flowlines across the orifice and favor flow. Intermittent clogging causes kinetic retardation in particle-laden flow even in the absence of inertial effects; the gradual increase in the local particle solidity above the constriction enhances particle interactions and the probability of clogging. The discharge volume before clogging is a Poisson process for small orifice-to-particle size ratio; however, the clogging probability becomes history-dependent for non-spherical particles at large orifice-to-particle size ratio and high solidities, i.e., when particle–particle interactions and interlocking gain significance.
Collapse
Affiliation(s)
- Ahmed Hafez
- Earth Science and Engineering, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Qi Liu
- Earth Science and Engineering, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Thomas Finkbeiner
- Earth Science and Engineering, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | | | | | | |
Collapse
|
30
|
Zimmermann U, Löwen H, Kreuter C, Erbe A, Leiderer P, Smallenburg F. Negative resistance for colloids driven over two barriers in a microchannel. SOFT MATTER 2021; 17:516-522. [PMID: 33226041 DOI: 10.1039/d0sm01700k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When considering the flow of currents through obstacles, one core expectation is that the total resistance of sequential single resistors is additive. While this rule is most commonly applied to electronic circuits, it also applies to other transport phenomena such as the flow of colloids or nanoparticles through channels containing multiple obstacles, as long as these obstacles are sufficiently far apart. Here we explore the breakdown of this additivity for fluids of repulsive colloids driven over two energetic barriers in a microchannel, using real-space microscopy experiments, particle-resolved simulations, and dynamical density functional theory. If the barrier separation is comparable to the particle correlation length, the resistance is highly non-additive, such that the resistance added by the second barrier can be significantly higher or lower than that of the first. Surprisingly, in some cases the second barrier can even add a negative resistance, such that two identical barriers are easier to cross than a single one. We explain this counterintuitive observation in terms of the structuring of particles trapped between the barriers.
Collapse
Affiliation(s)
- Urs Zimmermann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | | - Artur Erbe
- Institut für Ionenstrahlphysik und Materialforschung, Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | - Paul Leiderer
- Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany
| | - Frank Smallenburg
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany and Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France.
| |
Collapse
|
31
|
Wang J, Harth K, Stannarius R, Fan B, Börzsönyi T. Discharge of soft and hard grains and their mixtures from 2D silos. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124903002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The outflow characteristics of hard grains from containers with narrow basal openings have been extensively studied. Recently, it was shown that soft, low-frictional grains can behave qualitatively different from the behavior of rigid grains. We compare experimentally the discharge of monodisperse hard spheres, soft spheres and mixtures of both from a quasi-two dimensional (2D) silo. The experiments demonstrate the remarkable consequences of the addition of few hard particles to a soft particle ensemble, as well as the gradual transition between the two limiting cases of pure one-component materials.
Collapse
|
32
|
Safranyik F, Varga A. Numerical investigation of snowstorm filling. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124903005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
During industrial air preparation, one of the most important issues is the proper moisture content. In vehicle brake systems, compressed air is commonly used, where condensate in the system can lead to serious problems as corrosion, frosting, etc. For avoiding malfunctions, the relative humidity of the media must decrease to 20-40%, by adsorbing its moisture content. To achieve this, air dryer units filled with desiccant granular media is commonly used in railway industry. The compressed air flows through the dryer, thus the particles can bind the water vapour. If the packing density of the desiccant can increase, the efficiency of the dryer can improve. In this paper an interesting method for container filling, the snowstorm technique was investigated and optimized by applying discrete element method. Essence of the device is a rod system placed below the filler bin, which ensures even distribution of the particles. By the numerical analysis it was revealed, the particles’ lateral velocity is increased because of the snowstorm system, but with non-optimal arrangement, the particle flow can be significantly blocked. Based on our systematic analysis, optimal geometry of the particle distribution system was found, which ensures settling more particles by 9.5% into the dryer reservoir.
Collapse
|
33
|
Gans A, Aussillous P, Dalloz B, Nicolas M. The effect of cohesion on the discharge of a granular material through the orifice of a silo. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124908014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present the results of both experimental and numerical investigations of the silo discharge for a cohesive granular material. In our study, thanks to a cohesion-controlled granular material (CCGM) we propose to investigate the effect of the cohesive length lc, on the discharge of a silo for two different configurations, one axisymmetrical, and one quasi-2D rectangular silo. In both configurations, an adjustable bottom is used to control the size of the orifice. As observed for cohesionless granular material by previous studies, the mass flow rate and the density through an orifice are mostly controlled by the diameter of the orifice D. The experimental results of the quasi-2D silo are compared with continuum numerical simulations.
Collapse
|
34
|
Gella D, Maza D, Zuriguel I. Non-monotonic dependence of avalanche durations on particle velocities in the discharge of a silo. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124903007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The distributions of avalanche times between successive clog events are analyzed in a silo discharged with a conveyor belt. In a previous work [Phys. Rev. Lett. 121, 138001 (2018)], we measured the distribution of avalanche sizes (in number of particles) for the same experiment, finding a monotonous influence of both the outlet size and the velocity of particles in the clogging probability. Nonetheless, if avalanche durations are analyzed instead of avalanche sizes, a minimum is observed when representing the mean avalanche time as function of the velocity of particles. This phenomenon is explained using kinematic arguments, which are validated by experimental data. At the same time, this work aims at highlighting the importance of discerning between measuring clogging avalanches in terms of times or doing it in terms of number of particles.
Collapse
|
35
|
An experimental investigation on jamming and critical orifice size in the discharge of a two-dimensional silo with curved hopper. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Pascot A, Gaudel N, Antonyuk S, Bianchin J, Kiesgen De Richter S. Influence of mechanical vibrations on quasi-2D silo discharge of spherical particles. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Hernández-Delfin D, Pongó T, To K, Börzsönyi T, Hidalgo RC. Particle flow rate in silos under rotational shear. Phys Rev E 2020; 102:042902. [PMID: 33212719 DOI: 10.1103/physreve.102.042902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Very recently, To et al. have experimentally explored granular flow in a cylindrical silo, with a bottom wall that rotates horizontally with respect to the lateral wall [Phys. Rev. E 100, 012906 (2019)10.1103/PhysRevE.100.012906]. Here we numerically reproduce their experimental findings, in particular, the peculiar behavior of the mass flow rate Q as a function of the frequency of rotation f. Namely, we find that for small outlet diameters D the flow rate increased with f, while for larger D a nonmonotonic behavior is confirmed. Furthermore, using a coarse-graining technique, we compute the macroscopic density, momentum, and the stress tensor fields. These results show conclusively that changes in the discharge process are directly related to changes in the flow pattern from funnel flow to mass flow. Moreover, by decomposing the mass flux (linear momentum field) at the orifice into two main factors, macroscopic velocity and density fields, we obtain that the nonmonotonic behavior of the linear momentum is caused by density changes rather than by changes in the macroscopic velocity. In addition, by analyzing the spatial distribution of the kinetic stress, we find that for small orifices increasing rotational shear enhances the mean kinetic pressure 〈p^{k}〉 and the system dilatancy. This reduces the stability of the arches, and, consequently, the volumetric flow rate increases monotonically. For large orifices, however, we detected that 〈p^{k}〉 changes nonmonotonically, which might explain the nonmonotonic behavior of Q when varying the rotational shear.
Collapse
Affiliation(s)
- D Hernández-Delfin
- Departamento de Física y Matemática Aplicada, Universidad de Navarra, P.O. Box 31080, Navarra, Spain
| | - T Pongó
- Departamento de Física y Matemática Aplicada, Universidad de Navarra, P.O. Box 31080, Navarra, Spain
| | - K To
- Institute of Physics, Academia Sinica, P.O. Box 11529, Taipei, Taiwan R.O.C
| | - T Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - R C Hidalgo
- Departamento de Física y Matemática Aplicada, Universidad de Navarra, P.O. Box 31080, Navarra, Spain
| |
Collapse
|
38
|
Harth K, Wang J, Börzsönyi T, Stannarius R. Intermittent flow and transient congestions of soft spheres passing narrow orifices. SOFT MATTER 2020; 16:8013-8023. [PMID: 32785350 DOI: 10.1039/d0sm00938e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Soft, low-friction particles in silos show peculiar features during their discharge. The outflow velocity and the clogging probability both depend upon the momentary silo fill height, in sharp contrast to silos filled with hard particles. The reason is the fill-height dependence of the pressure at the orifice. We study the statistics of silo discharge of soft hydrogel spheres. The outflow is found to become increasingly fluctuating and even intermittent with decreasing orifice size, and with decreasing fill height. In orifices narrower than two particle diameters, outflow can stop completely, but in contrast to clogs formed by rigid particles, these congestions may dissolve spontaneously. We analyze such non-permanent congestions and attribute them to slow reorganization processes in the container, caused by viscoelasticity of the material.
Collapse
Affiliation(s)
- Kirsten Harth
- Institute of Physics, Otto von Guericke University, Department of Nonlinear Phenomena, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | | | | | | |
Collapse
|
39
|
|
40
|
Yodh JS, Spandan V, Mahadevan L. Suspension Jams in a Leaky Microfluidic Channel. PHYSICAL REVIEW LETTERS 2020; 125:044501. [PMID: 32794808 DOI: 10.1103/physrevlett.125.044501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 02/26/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Inspired by the jamming in leaky systems that arises in many physiological and industrial settings, we study the propagation of clogs in a leaky microfluidic channel. By driving a colloidal suspension through such a channel with a fluid-permeable wall adjoining a gutter, we follow the formation and propagation of jams and show that they move at a steady speed, in contrast with jams in channels that have impermeable walls. Furthermore, by varying the ratio of the resistance from the leaky wall and that of the gutter, we show that it is possible to control the shape of the propagating jam, which is typically wedge shaped. We complement our experiments with numerical simulations, where we implement an Euler-Lagrangian framework for the simultaneous evolution of both immersed colloidal particles and the carrier fluid. Finally, we show that the particle ordering in the clog can be tuned by adjusting the geometry of the leaky wall. Altogether, the leaky channel serves both as a filter and a shunt with the potential for a range of uses.
Collapse
Affiliation(s)
- J S Yodh
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - V Spandan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - L Mahadevan
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
41
|
López D, Hernández-Delfin D, Hidalgo RC, Maza D, Zuriguel I. Clogging-jamming connection in narrow vertical pipes. Phys Rev E 2020; 102:010902. [PMID: 32795048 DOI: 10.1103/physreve.102.010902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/02/2020] [Indexed: 11/07/2022]
Abstract
We report experimental evidence of clogging due to the spontaneous development of hanging arches when a granular sample composed of spherical particles flows down a narrow vertical pipe. These arches, akin to the ones responsible for silo clogging, can only be possible due to the role of frictional forces; otherwise they will be unstable. We find that, contrary to the silo case, the probability of clogging in vertical narrow tubes does not decrease monotonically with the ratio of the pipe-to-particle diameters. This behavior is related to the clogging prevention caused by the spontaneous ordering of particles apparent in certain aspect ratios. More importantly, by means of numerical simulations, we discover that the interparticle normal force distributions broaden in systems with higher probability of clogging. This feature, which has been proposed before as a distinctive feature of jamming in sheared granular samples, suggests that clogging and jamming are connected in pipe flow.
Collapse
Affiliation(s)
- Diego López
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Dariel Hernández-Delfin
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Raúl C Hidalgo
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Diego Maza
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Iker Zuriguel
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| |
Collapse
|
42
|
Pradeep S, Hsiao LC. Contact criterion for suspensions of smooth and rough colloids. SOFT MATTER 2020; 16:4980-4989. [PMID: 32432605 DOI: 10.1039/d0sm00072h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a procedure to obtain the search distance used to determine particle contact in dense suspensions of smooth and rough colloids. This method works by summing physically relevant length scales in an uncertainty analysis and does not require detailed quantification of the surface roughness. We suspend sterically stabilized, fluorescent poly(methyl methacrylate) colloids in a refractive index-matched solvent, squalene, in order to ensure hard sphere-like behavior. High speed centrifugation is used to pack smooth and rough colloids to their respective jamming points, φJ. The jammed suspensions are subsequently diluted with known volumes of solvent to φ < φJ. Structural parameters obtained from confocal laser scanning micrographs of the diluted colloidal suspensions are extrapolated to φJ to determine the mean contact number at jamming, 〈z〉J. Contact below jamming refers to nearest neighbors at a length scale below which the effects of hydrodynamic or geometric friction come into play. Sensitivity analyses show that a deviation of the search distance by 1% of the particle diameter results in 〈z〉 changing by up to 10%, with the error in contact number distribution being magnified in dense suspensions (φ > 0.50) due to an increased number of nearest neighbors in the first coordination shell.
Collapse
Affiliation(s)
- Shravan Pradeep
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
43
|
Souzy M, Zuriguel I, Marin A. Transition from clogging to continuous flow in constricted particle suspensions. Phys Rev E 2020; 101:060901. [PMID: 32688531 DOI: 10.1103/physreve.101.060901] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
When suspended particles are pushed by liquid flow through a constricted channel, they might either pass the bottleneck without trouble or encounter a permanent clog that will stop them forever. However, they may also flow intermittently with great sensitivity to the neck-to-particle size ratio D/d. In this Rapid Communication, we experimentally explore the limits of the intermittent regime for a dense suspension through a single bottleneck as a function of this parameter. To this end, we make use of high time- and space-resolution experiments to obtain the distributions of arrest times (T) between successive bursts, which display power-law tails (∝T^{-α}) with characteristic exponents. These exponents compare well with the ones found for as disparate situations as the evacuation of pedestrians from a room, the entry of a flock of sheep into a shed, or the discharge of particles from a silo. Nevertheless, the intrinsic properties of our system (i.e., channel geometry, driving and interaction forces, particle size distribution) seem to introduce a sharp transition from a clogged state (α≤2) to a continuous flow, where clogs do not develop at all. This contrasts with the results obtained in other systems where intermittent flow, with power-law exponents above two, were obtained.
Collapse
Affiliation(s)
- Mathieu Souzy
- Physics of Fluids, University of Twente, Enschede, The Netherlands
| | - Iker Zuriguel
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - Alvaro Marin
- Physics of Fluids, University of Twente, Enschede, The Netherlands
| |
Collapse
|
44
|
Xu S, Sun H, Cai Y, Geng X. Studying the orifice jamming of a polydispersed particle system via coupled CFD–DEM simulations. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Areán MG, Boschan A, Cachile MA, Aguirre MA. Granular flow through an aperture: Influence of obstacles near the outlet. Phys Rev E 2020; 101:022901. [PMID: 32168580 DOI: 10.1103/physreve.101.022901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/20/2019] [Indexed: 11/07/2022]
Abstract
We study how the presence of obstacles in a confined system of monodisperse disks affects their discharge through an aperture. The disks are driven by a horizontal conveyor belt that moves at constant velocity. The mean packing fraction at the outlet decreases as the distance between the obstacles and the aperture decreases. The obstacles organize the dynamics of the stagnant zones in two characteristic behaviors that differ mainly in the magnitude of the fluctuations of the fraction of stagnant disks in the system. It is shown that the effective aperture is reduced by the presence of obstacles.
Collapse
Affiliation(s)
- M G Areán
- Grupo de Medios Porosos, Fac. de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, (C1063ACV) Buenos Aires, Argentina
| | - A Boschan
- Grupo de Medios Porosos, Fac. de Ingeniería, Universidad de Buenos Aires, CONICET, Paseo Colón 850, (C1063ACV) Buenos Aires, Argentina
| | - M A Cachile
- Grupo de Medios Porosos, Fac. de Ingeniería, Universidad de Buenos Aires, CONICET, Paseo Colón 850, (C1063ACV) Buenos Aires, Argentina
| | - M A Aguirre
- Grupo de Medios Porosos, Fac. de Ingeniería, Universidad de Buenos Aires, CONICET, Paseo Colón 850, (C1063ACV) Buenos Aires, Argentina
| |
Collapse
|
46
|
Xue J, Schiano S, Zhong W, Chen L, Wu CY. Determination of the flow/no-flow transition from a flat bottom hopper. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.08.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Kozlowski R, Carlevaro CM, Daniels KE, Kondic L, Pugnaloni LA, Socolar JES, Zheng H, Behringer RP. Dynamics of a grain-scale intruder in a two-dimensional granular medium with and without basal friction. Phys Rev E 2019; 100:032905. [PMID: 31640066 DOI: 10.1103/physreve.100.032905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 11/07/2022]
Abstract
We report on a series of experiments in which a grain-sized intruder is pushed by a spring through a two-dimensional granular material composed of photoelastic disks in a Couette geometry. We study the intruder dynamics as a function of packing fraction for two types of supporting substrates: A frictional glass plate and a layer of water for which basal friction forces are negligible. We observe two dynamical regimes: Intermittent flow, in which the intruder moves freely most of the time but occasionally gets stuck, and stick-slip dynamics, in which the intruder advances via a sequence of distinct, rapid events. When basal friction is present, we observe a smooth crossover between the two regimes as a function of packing fraction, and we find that reducing the interparticle friction coefficient causes the stick-slip regime to shift to higher packing fractions. When basal friction is eliminated, we observe intermittent flow at all accessible packing fractions. For all cases, we present results for the statistics of stick events, the intruder velocity, and the force exerted on the intruder by the grains. Our results indicate the qualitative importance of basal friction at high packing fractions and suggest a possible connection between intruder dynamics in a static material and clogging dynamics in granular flows.
Collapse
Affiliation(s)
- Ryan Kozlowski
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - C Manuel Carlevaro
- Instituto de Física de Líquidos y Sistemas Biológicos, CONICET, 59 789, 1900 La Plata, Argentina and Dpto. Ing. Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, Av. 60 Esq. 124, La Plata, 1900, Argentina
| | - Karen E Daniels
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Lou Kondic
- Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Luis A Pugnaloni
- Dpto. de Física, Fac. Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, CONICET, Uruguay 151, 6300 Santa Rosa (La Pampa), Argentina
| | - Joshua E S Socolar
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Hu Zheng
- Department of Physics, Duke University, Durham, North Carolina 27708, USA.,Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China
| | - Robert P Behringer
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
48
|
Bolshak G, Chatterjee R, Lieberman R, Shokef Y. Kinetically constrained model for gravity-driven granular flow and clogging. Phys Rev E 2019; 100:032137. [PMID: 31639892 DOI: 10.1103/physreve.100.032137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 11/07/2022]
Abstract
We add extreme driving to the Kob-Andersen kinetically constrained lattice-gas model in order to mimic the effect of gravity on dense granular systems. For low particle densities, the current that develops in the system agrees at arbitrary field intensity with a mean-field theory. At intermediate densities, spatial correlations give rise to nonmonotonic dependence of the current on field intensity. At higher densities, the current ultimately vanishes at a finite, field-dependent density. We supplement the study of this bulk behavior with an investigation of the current through a narrow hole. There, lateral flow decreases the local density in front of the hole. Remarkably, the current through the hole quantitatively agrees with a theoretical prediction based on the bulk current at the measured local density.
Collapse
Affiliation(s)
- Gregory Bolshak
- School of Mechanical Engineering and Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rakesh Chatterjee
- School of Mechanical Engineering and Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Yair Shokef
- School of Mechanical Engineering and Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
49
|
To K, Yen Y, Mo YK, Huang JR. Granular flow from silos with rotating orifice. Phys Rev E 2019; 100:012906. [PMID: 31499781 DOI: 10.1103/physreve.100.012906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 06/10/2023]
Abstract
For dry granular materials falling through a circular exit at the bottom of a silo, no continuous flow can be sustained when the diameter D of the exit is less than five times the characteristic size of the grains. If the bottom of the silo rotates horizontally with respect to the wall of the silo, finite flow rate can be sustained even at small D. We investigate the effect of bottom rotation to the flow rate of monodisperse plastic beads of d=6mm diameter from a cylindrical silo of 19 cm inner diameter. We find that the flow rate W follows Beverloo law down to D=1.3d and that W increases with the rotation speed ω in the small exit regime. If the exit is at an off-center distance R from the axis of the silo, W increases with the rate of area swept by the exit. On the other hand, when the exit diameter is large, W decreases with increasing ω at small ω but increases with ω at large ω. Such nonmonotonic dependence of flow rate on rotation speed may be explained as a gradual change from funnel flow to mass flow due to the shear at the bottom of the silo.
Collapse
Affiliation(s)
- Kiwing To
- Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yun Yen
- Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yi-Kai Mo
- Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Jung-Ren Huang
- Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
50
|
Pakpour M, Vandewalle N, Lumay G. Decompaction of wet granular materials under freeze-thaw cycling. Phys Rev E 2019; 99:012901. [PMID: 30780361 DOI: 10.1103/physreve.99.012901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Indexed: 11/07/2022]
Abstract
The packing fraction dynamics of a wet granular material submitted to freeze-thaw cycling is investigated experimentally. The dynamics is strongly influenced by the liquid volume fraction ω in the considered range of 0.03<ω<0.32. This range of liquid contents covers different regimes of wetness from the creation of the capillary network until the formation of large clusters and finally close to the saturated case. For the liquid contents ω≳0.15, the pile experiences a decompaction until a particular value of the packing fraction 0.56 corresponding to a random loose packing configuration for monosized spheres. Moreover, the decompaction starts after a cycling number that decreases exponentially with the liquid content. Finally, we show that the packing dynamics can be well modeled on the basis of a Landau potential with an asymmetric double-well structure. The onset of decompaction represents the tendency of the system to stay in a metastable state. After several cycles, the forces induced by the thermal cycling and local stochastic rearrangements of the grains can drive the system to overcome the energy barrier of the cohesive forces.
Collapse
Affiliation(s)
- Maryam Pakpour
- GRASP, Physics Department, University of Liège, B-4000 Liège, Belgium.,Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45195-1159, Iran.,Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran, Iran
| | | | - Geoffroy Lumay
- GRASP, Physics Department, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|