1
|
Bagheri H, Goodisman MAD, Goldman DI. Detecting subtle subterranean movement via laser speckle imaging. J Exp Biol 2024; 227:jeb247267. [PMID: 39575697 DOI: 10.1242/jeb.247267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/07/2024] [Indexed: 12/02/2024]
Abstract
A diversity of organisms live within underground environments. However, visualizing subterranean behavior is challenging because of the opacity of most substrates. We demonstrate that laser speckle imaging, a non-invasive technique resolving nanometer-scale movements, facilitates quantifying biological activity in a granular medium. We monitored fire ants (Solenopsis invicta) at different developmental stages, burial depths (1-5 cm) and moisture fractions (0 and 0.1 by volume) in a container of 0.7 mm glass particles. Although the speckle pattern from the backscattered light precludes direct imaging of animal kinematics, analysis of integrated image differences revealed that spiking during ant movement increased with the developmental phase. Greater burial depth and saturation resulted in fewer and lower magnitude spikes. We verified that spiking correlated with movement via quasi-2D experiments. This straightforward method, involving a laser and digital camera, can be applied to laboratory and potentially field situations to gain insight into subterranean organism activities.
Collapse
Affiliation(s)
- Hosain Bagheri
- School of Biological Sciences, Georgia Tech, 310 Ferst Drive, Atlanta, GA 30332, USA
- School of Physics, Georgia Tech, 837 State Street NW, Atlanta, GA, 30332, USA
| | - Michael A D Goodisman
- School of Biological Sciences, Georgia Tech, 310 Ferst Drive, Atlanta, GA 30332, USA
| | - Daniel I Goldman
- School of Physics, Georgia Tech, 837 State Street NW, Atlanta, GA, 30332, USA
| |
Collapse
|
3
|
Born P, Braibanti M, Cristofolini L, Cohen-Addad S, Durian DJ, Egelhaaf SU, Escobedo-Sánchez MA, Höhler R, Karapantsios TD, Langevin D, Liggieri L, Pasquet M, Rio E, Salonen A, Schröter M, Sperl M, Sütterlin R, Zuccolotto-Bernez AB. Soft matter dynamics: A versatile microgravity platform to study dynamics in soft matter. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:124503. [PMID: 34972443 DOI: 10.1063/5.0062946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
We describe an experiment container with light scattering and imaging diagnostics for experiments on soft matter aboard the International Space Station (ISS). The suite of measurement capabilities can be used to study different materials in exchangeable sample cell units. The currently available sample cell units and future possibilities for foams, granular media, and emulsions are presented in addition to an overview of the design and the diagnostics of the experiment container. First results from measurements performed on ground and during the commissioning aboard the ISS highlight the capabilities of the experiment container to study the different materials.
Collapse
Affiliation(s)
- P Born
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - M Braibanti
- HE Space Operations BV for ESA, NL-2200AG Noordwijk, The Netherlands
| | - L Cristofolini
- CNR - Institute of Condensed Matter Chemistry and Technologies for Energy Unit of Genoa, 16149 Genova, Italy
| | - S Cohen-Addad
- Sorbonne Universités, UPMC Univ Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - D J Durian
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - S U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - M A Escobedo-Sánchez
- Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - R Höhler
- Sorbonne Universités, UPMC Univ Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - T D Karapantsios
- Department of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - D Langevin
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université de Paris Saclay, 91405 Orsay, France
| | - L Liggieri
- CNR - Institute of Condensed Matter Chemistry and Technologies for Energy Unit of Genoa, 16149 Genova, Italy
| | - M Pasquet
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université de Paris Saclay, 91405 Orsay, France
| | - E Rio
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université de Paris Saclay, 91405 Orsay, France
| | - A Salonen
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université de Paris Saclay, 91405 Orsay, France
| | - M Schröter
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - M Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - R Sütterlin
- Department TESXS Science Systems Engineering, Airbus Defence and Space, Claude Dornier Str., 88090 Immenstaad, Germany
| | - A B Zuccolotto-Bernez
- Condensed Matter Physics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Hentschel HGE, Procaccia I, Roy S. Diffusion in agitated frictional granular matter near the jamming transition. Phys Rev E 2019; 100:042902. [PMID: 31770972 DOI: 10.1103/physreve.100.042902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 06/10/2023]
Abstract
We study agitated frictional disks in two dimensions with the aim of developing a scaling theory for their diffusion over time. As a function of the area fraction ϕ and mean-square velocity fluctuations 〈v^{2}〉 the mean-square displacement of the disks 〈d^{2}〉 spans four to five orders of magnitude. The motion evolves from a subdiffusive form to a complex diffusive behavior at long times. The statistics of 〈d^{n}〉 at all times are multiscaling, since the probability distribution function (PDF) of displacements has very broad wings. Even where a diffusion constant can be identified it is a complex function of ϕ and 〈v^{2}〉. By identifying the relevant length and time scales and their interdependence one can rescale the data for the mean-square displacement and the PDF of displacements into collapsed scaling functions for all ϕ and 〈v^{2}〉. These scaling functions provide a predictive tool, allowing one to infer from one set of measurements (at a given ϕ and 〈v^{2}〉) what are the expected results at any value of ϕ and 〈v^{2}〉 within the scaling range.
Collapse
Affiliation(s)
- H G E Hentschel
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Itamar Procaccia
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Saikat Roy
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
5
|
Amon DL, Niculescu T, Utter BC. Granular avalanches in a two-dimensional rotating drum with imposed vertical vibration. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012203. [PMID: 23944450 DOI: 10.1103/physreve.88.012203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 03/22/2013] [Indexed: 06/02/2023]
Abstract
We present statistics on granular avalanches in a rotating drum with and without imposed vertical vibration. The experiment consists of a quasi-two-dimensional, vertical drum containing pentagonal particles and rotated at a constant angular velocity. The drum rests on an electromagnetic shaker to allow vibration of the assembly as it rotates. We measure time series of the slope of the interface and find that the critical angle for slope failure θ(c) and the resulting angle of repose θ(r) are broadly distributed with an approximate power-law distribution of avalanches θ(c)-θ(r) for large avalanches. The faceted pentagonal grains used lead to significant interlocking with critical and repose angles (θ(c)≈45° and θ(r)≈39°) larger than experiments using spherical grains, even with vibration, and avalanche magnitudes correlated with the prior build-up and anti-correlated with the prior avalanche. We find that the stability of the assembly increases with small vibrations and is destabilized at vibration amplitudes above a dimensionless acceleration (peak acceleration divided by acceleration due to gravity) of Γ=0.2. We also study history dependence of the avalanches by periodically oscillating the drum to compare the initial avalanche upon reversal of shear to steady-state distributions for avalanches during continuous rotation. We observe history dependence as an initial decrease in critical angle upon reversal of the drum rotation direction, indicating that a texture is induced to resist continued shear such that the surface is weaker to reversals in shear direction. Memory of this history is removed by sufficient external vibration (Γ≥0.8), which leads to compaction and relaxation of the surface layer grains responsible for avalanching dynamics, as initial and steady-state avalanche distributions become indistinguishable.
Collapse
Affiliation(s)
- Daniel L Amon
- Department of Physics and Astronomy, James Madison University, Harrisonburg, Virginia 22807, USA
| | | | | |
Collapse
|
6
|
Sadjadi Z, Miri M. Diffusive transport of light in two-dimensional granular materials. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:051305. [PMID: 22181409 DOI: 10.1103/physreve.84.051305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Indexed: 05/31/2023]
Abstract
We study photon diffusion in a two-dimensional random packing of monodisperse disks as a simple model of granular material. We apply ray optics approximation to set up a persistent random walk for the photons. We employ Fresnel's intensity reflectance with its rich dependence on the incidence angle and polarization state of the light. We present an analytic expression for the transport-mean-free path l* in terms of the refractive indices of grains and host medium, grain radius, and packing fraction. We perform numerical simulations to examine our analytical result.
Collapse
Affiliation(s)
- Zeinab Sadjadi
- Theoretische Physik, Universität des Saarlandes, Saarbrücken, Germany
| | | |
Collapse
|