1
|
Zeng J, Deng A, Gao C, Hou Y, Yuan J. Extended chemical picture of ionization balance to extremely dense plasmas. Phys Rev E 2025; 111:015211. [PMID: 39972903 DOI: 10.1103/physreve.111.015211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025]
Abstract
Understanding the ionization balance of extremely dense plasmas still remains a scientific challenge for both theory and experiment, which is very important in many research fields such as the equation of state, radiative opacity, and thermal and electrical conductivities. In a most recent experiment at the National Ignition Facility, the onset of pressure-driven K-shell delocalization was observed in hot dense Be plasmas [T. Döppner et al., Nature (London) 618, 270 (2023)0028-083610.1038/s41586-023-05996-8]. However, all the referenced widely used ionization models can only reproduce part of the experimental data on the ionization state. It is generally regarded that the normal Saha equation is difficult to be applied to the dense plasma regime of, for instance, above a mass density of 10g/cm^{3} when the interactions between the charged particles and the pressure ionization start to dominate the ionization balance. Herein, we show that the chemical picture of the ionization balance can be extended to an even denser regime up to a density of, for example, 100g/cm^{3} or higher when the nonideal effects due to the interactions between the electrons and ions and among the electrons themselves and the pressure-induced ionization can be properly considered in a modified Saha equation. An accurate prediction of the ionization potential depression is crucial to depict the transition of the pressure-induced ionization with increasing plasma density. Comparison of our calculated average degree of ionization with the above-mentioned experiment shows good agreement for all the experimental data before and after the K-shell delocalization transition.
Collapse
Affiliation(s)
- Jiaolong Zeng
- Zhejiang University of Technology, School of Physics, Hangzhou Zhejiang 310023, People's Republic of China
- National University of Defense Technology, College of Science, Changsha Hunan 410073, People's Republic of China
| | - Aihua Deng
- Zhejiang University of Technology, School of Physics, Hangzhou Zhejiang 310023, People's Republic of China
| | - Cheng Gao
- National University of Defense Technology, College of Science, Changsha Hunan 410073, People's Republic of China
| | - Yong Hou
- National University of Defense Technology, College of Science, Changsha Hunan 410073, People's Republic of China
| | - Jianmin Yuan
- Jilin University, Institute of Atomic and Molecular Physics, Changchun, Jilin 130012, People's Republic of China
| |
Collapse
|
2
|
Huang Y, Liang Z, Zeng J, Yuan J. Nonideal effects on ionization potential depression and ionization balance in dense Al and Au plasmas. Phys Rev E 2024; 109:045210. [PMID: 38755935 DOI: 10.1103/physreve.109.045210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
For low-density plasmas, the ionization balance can be properly described by the normal Saha equation in the chemical picture. For dense plasmas, however, nonideal effects due to the interactions between the electrons and ions and among the electrons themselves affect the ionization potential depression and the ionization balance. With the increasing of plasma density, the pressure ionization starts to play a more obvious role and competes with the thermal ionization. Based on a local-density temperature-dependent ion-sphere model, we develop a unified and self-consistent theoretical formalism to simultaneously investigate the ionization potential depression, the ionization balance, and the charge states distributions of the dense plasmas. In this work, we choose Al and Au plasmas as examples as Al is a prototype light element and Au is an important heavy element in many research fields such as in the inertial confinement fusion. The nonideal effect of the free electrons in the plasmas is considered by the single-electron effective potential contributed by both the bound electrons of different charge states and the free electrons in the plasmas. For the Al plasmas, we can reconcile the results of two experiments on measuring the ionization potential depression, in which one experiment can be better explained by the Stewart-Pyatt model while the other fits better with the Ecker-Kröll model. For dense Au plasmas, the results show that the double peak structure of the charge state distribution appears to be a common phenomenon. In particular, the calculated ionization balance shows that the two- and three-peak structures can appear simultaneously for denser Au plasmas above ∼30g/cm^{3}.
Collapse
Affiliation(s)
- Yihua Huang
- College of Science, Zhejiang University of Technology, Hangzhou Zhejiang 310023, People's Republic of China
| | - Zhenhao Liang
- College of Science, Zhejiang University of Technology, Hangzhou Zhejiang 310023, People's Republic of China
| | - Jiaolong Zeng
- College of Science, Zhejiang University of Technology, Hangzhou Zhejiang 310023, People's Republic of China
| | - Jianmin Yuan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun Jilin 130012, People's Republic of China
- Graduate School of China Academy of Engineering Physics, Beijing 100193, People's Republic of China
| |
Collapse
|
3
|
Ovechkin AA, Loboda PA, Popova VV, Akulinina EY, Berezovskaya ME, Korolev AS, Kolchugin SV. Plasma ionization balance in chemical-picture and average-atom models. Phys Rev E 2023; 108:015207. [PMID: 37583194 DOI: 10.1103/physreve.108.015207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/02/2023] [Indexed: 08/17/2023]
Abstract
We propose an approximate method to calculate ion partition functions in the context of the chemical-picture representation of plasmas as an interacting mixture of various ions and free electrons under the local-thermodynamic-equilibrium conditions. The method uses the superconfiguration approach and implies that the first-order corrections to the energies of excited electron configurations due to the electron-electron interaction may be replaced by a similar first-order correction to the energy of the basic configuration of an ion with the same number of bound electrons. The method enables one to significantly speed up the calculations and generally provides quite accurate results. Using the method proposed, plasma ionization balance and average ion charges calculated on the base of the chemical-picture representation show a good agreement with the relevant average-atom data. For the case of weak electron-ion nonideality, we provide approximate relations between the chemical-picture and average-atom values of the average ion charge, chemical potential, and plasma-density depression of ionization potential.
Collapse
Affiliation(s)
- A A Ovechkin
- Russian Federal Nuclear Center-Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), 13, Vasilyeva st., Snezhinsk, Chelyabinsk region 456770, Russia
| | - P A Loboda
- Russian Federal Nuclear Center-Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), 13, Vasilyeva st., Snezhinsk, Chelyabinsk region 456770, Russia
- National Research Nuclear University-Moscow Engineering Physics Institute (MEPhI), 31, Kashirskoe sh., Moscow 115409, Russia
| | - V V Popova
- Russian Federal Nuclear Center-Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), 13, Vasilyeva st., Snezhinsk, Chelyabinsk region 456770, Russia
| | - E Yu Akulinina
- Russian Federal Nuclear Center-Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), 13, Vasilyeva st., Snezhinsk, Chelyabinsk region 456770, Russia
| | - M E Berezovskaya
- Russian Federal Nuclear Center-Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), 13, Vasilyeva st., Snezhinsk, Chelyabinsk region 456770, Russia
| | - A S Korolev
- Russian Federal Nuclear Center-Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), 13, Vasilyeva st., Snezhinsk, Chelyabinsk region 456770, Russia
| | - S V Kolchugin
- Russian Federal Nuclear Center-Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), 13, Vasilyeva st., Snezhinsk, Chelyabinsk region 456770, Russia
| |
Collapse
|
4
|
Zeng J, Li Y, Hou Y, Yuan J. Nonideal effect of free electrons on ionization equilibrium and radiative property in dense plasmas. Phys Rev E 2023; 107:L033201. [PMID: 37072979 DOI: 10.1103/physreve.107.l033201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/26/2023] [Indexed: 04/20/2023]
Abstract
The thermodynamic as well as optical properties of strongly coupled plasmas depend crucially on the average degree of ionization and the ionic state composition, which, however, cannot be determined by using the normal Saha equation usually used for the ideal plasmas. Hence, an adequate treatment of the ionization balance and the charge state distribution of strongly coupled plasmas is still a challenge for theory due to the interactions between the electrons and ions and among the electrons themselves. Based on a local density temperature-dependent ion-sphere model, the Saha equation approach is extended to the regime of strongly coupled plasmas by taking into account the free-electron-ion interaction, the free-free-electron interaction, the nonuniform free-electron space distribution, and the free-electron quantum partial degeneracy. All the quantities, including the bound orbitals with ionization potential depression, free-electron distribution, and bound and free-electron partition function contributions, are calculated self-consistently in the theoretical formalism. This study shows that the ionization equilibrium is evidently modified by considering the above nonideal characteristics of the free electrons. Our theoretical formalism is validated by the explanation of a recent experimental measurement of the opacity of dense hydrocarbon.
Collapse
Affiliation(s)
- Jiaolong Zeng
- College of Science, Zhejiang University of Technology, Hangzhou Zhejiang 310023, People's Republic of China
- College of Science, National University of Defense Technology, Changsha Hunan 410073, People's Republic of China
| | - Yongjun Li
- College of Science, National University of Defense Technology, Changsha Hunan 410073, People's Republic of China
| | - Yong Hou
- College of Science, National University of Defense Technology, Changsha Hunan 410073, People's Republic of China
| | - Jianmin Yuan
- College of Science, National University of Defense Technology, Changsha Hunan 410073, People's Republic of China
- Graduate School of China Academy of Engineering Physics, Beijing 100193, People's Republic of China
| |
Collapse
|
5
|
Bethkenhagen M, Sharma A, Suryanarayana P, Pask JE, Sadigh B, Hamel S. Properties of carbon up to 10 million kelvin from Kohn-Sham density functional theory molecular dynamics. Phys Rev E 2023; 107:015306. [PMID: 36797894 DOI: 10.1103/physreve.107.015306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Accurately modeling dense plasmas over wide-ranging conditions of pressure and temperature is a grand challenge critically important to our understanding of stellar and planetary physics as well as inertial confinement fusion. In this work, we employ Kohn-Sham density functional theory (DFT) molecular dynamics (MD) to compute the properties of carbon at warm and hot dense matter conditions in the vicinity of the principal Hugoniot. In particular, we calculate the equation of state (EOS), Hugoniot, pair distribution functions, and diffusion coefficients for carbon at densities spanning 8 g/cm^{3} to 16 g/cm^{3} and temperatures ranging from 100 kK to 10 MK using the Spectral Quadrature method. We find that the computed EOS and Hugoniot are in good agreement with path integral Monte Carlo results and the sesame database. Additionally, we calculate the ion-ion structure factor and viscosity for selected points. All results presented are at the level of full Kohn-Sham DFT-MD, free of empirical parameters, average-atom, and orbital-free approximations employed previously at such conditions.
Collapse
Affiliation(s)
- Mandy Bethkenhagen
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- École Normale Supérieure de Lyon, Université Lyon 1, Laboratoire de Géologie de Lyon, CNRS UMR 5276, 69364 Lyon, Cedex 07, France
| | - Abhiraj Sharma
- College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Phanish Suryanarayana
- College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - John E Pask
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Babak Sadigh
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Sebastien Hamel
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
6
|
Multi-Configuration Calculation of Ionization Potential Depression. PLASMA 2022. [DOI: 10.3390/plasma5040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The modelling of ionization potential depression in warm and hot dense plasmas constitutes a real theoretical challenge due to ionic coupling and electron degeneracy effects. In this work, we present a quantum statistical model based on a multi-configuration description of the electronic structure in the framework of Density Functional Theory. We discuss different conceptual issues inherent to the definition of ionization potential depression and compare our results with the famous and widely-used Ecker-Kröll and Stewart-Pyatt models.
Collapse
|
7
|
Faussurier G, Blancard C, Bethkenhagen M. Carbon ionization from a quantum average-atom model up to gigabar pressures. Phys Rev E 2021; 104:025209. [PMID: 34525570 DOI: 10.1103/physreve.104.025209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/28/2021] [Indexed: 11/07/2022]
Abstract
We use a nonrelativistic average-atom model to calculate carbon ionization at megabar and gigabar pressures. The pressure is calculated using the stress-tensor method. The electronic electrical conductivity is also considered using the Kubo-Greenwood approach. Comparisons are made with quantum molecular dynamic simulations. A good agreement is obtained for the pressure between the average-atom model and the quantum molecular dynamic simulations in the regime of gigabar pressures. However, the discrepancy already seen with the PURGATORIO code for the average ionization deduced from the quantum molecular dynamic simulations is also observed here with the present average-atom model. Excellent agreement with the PURGATORIO code is found for the average ionization.
Collapse
Affiliation(s)
- Gérald Faussurier
- CEA, DAM, DIF, F-91297 Arpajon, France and Université Paris-Saclay, CEA, LMCE, F-91680 Bruyères-le-Châtel, France
| | - Christophe Blancard
- CEA, DAM, DIF, F-91297 Arpajon, France and Université Paris-Saclay, CEA, LMCE, F-91680 Bruyères-le-Châtel, France
| | - Mandy Bethkenhagen
- École Normale Supérieure de Lyon, Université Lyon 1, Laboratoire de Géologie de Lyon, CNRS UMR 5276, F-69364 Lyon Cedex 07, France and University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
8
|
Davletov AE, Kurbanov F, Mukhametkarimov YS. Influence of dust particles on ionization equilibrium in partially ionized plasmas. Phys Rev E 2020; 101:063203. [PMID: 32688540 DOI: 10.1103/physreve.101.063203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
A chemical model is proposed for a dusty plasma consisting of electrons, ions, neutrals, and positively charged dust particles all being at thermodynamic equilibrium. An expression is derived for the Helmholtz free energy, which comprises the ideal part, taking into account the charge of dust particles, and the excess part, evaluated in the framework of the self-consistent chemical model [Phys. Rev. E 83, 016405 (2011)PLEEE81539-375510.1103/PhysRevE.83.016405]. The ionization potential depression for a dust-free partially ionized hydrogen is analytically evaluated for weakly and strongly ionized states to consistently account for the presence of charged and neutral components. An ad hoc interpolation of the ionization potential depression, valid across the whole ionization region, is put forward and subsequent solution of the generalized Saha equation is found to be in a perfect agreement with exact calculations. Minimization of the Helmholtz free energy of dusty plasmas provides the number densities of free electrons, free ions, neutrals, and the dust electric charge as well. Based on consideration of weakly and strongly ionized states, a straightforward comparison is made of the ionization equilibrium in a partially ionized plasma with and without dust particles to demonstrate that at thermal equilibrium positively charged dusts are responsible for an increase in the number density of free electrons and a decrease in the number density of free ions. It is analytically proved that nonideality effects result in a growth of the number densities of free electrons and ions by obtaining the so-called electron and proton ionization potential depressions. Electric charge of dust particles is systematically studied as a full plasma component rather than considering a detailed balance of the electron and ion fluxes on the surface of a solitary dust grain.
Collapse
Affiliation(s)
- A E Davletov
- Department of Physics and Technology, Al-Farabi Kazakh National University, 71 Al-Farabi av., 050040 Almaty, Kazakhstan
| | - F Kurbanov
- Department of Physics and Technology, Al-Farabi Kazakh National University, 71 Al-Farabi av., 050040 Almaty, Kazakhstan
| | - Ye S Mukhametkarimov
- Department of Physics and Technology, Al-Farabi Kazakh National University, 71 Al-Farabi av., 050040 Almaty, Kazakhstan
| |
Collapse
|
9
|
Röpke G, Blaschke D, Döppner T, Lin C, Kraeft WD, Redmer R, Reinholz H. Ionization potential depression and Pauli blocking in degenerate plasmas at extreme densities. Phys Rev E 2019; 99:033201. [PMID: 30999524 DOI: 10.1103/physreve.99.033201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 06/09/2023]
Abstract
New facilities explore warm dense matter (WDM) at conditions with extreme densities (exceeding ten times condensed matter densities) so that electrons are degenerate even at temperatures of 10-100 eV. Whereas in the nondegenerate region correlation effects such as Debye screening are relevant for the ionization potential depression (IPD), new effects have to be considered in degenerate plasmas. In addition to the Fock shift of the self-energies, the bound-state Pauli blocking becomes important with increasing density. Standard approaches to IPD such as Stewart-Pyatt and widely used opacity tables (e.g., OPAL) do not contain Pauli blocking effects for bound states. The consideration of degeneracy effects leads to a reduction of the ionization potential and to a higher degree of ionization. As an example, we present calculations for the ionization degree of carbon plasmas at T = 100 eV and extreme densities up to 40 g/cm^{3}, which are relevant to experiments that are currently scheduled at the National Ignition Facility.
Collapse
Affiliation(s)
- Gerd Röpke
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
- Department of Theoretical Nuclear Physics, National Research Nuclear University (MEPhI), 115409 Moscow, Russia
| | - David Blaschke
- Department of Theoretical Nuclear Physics, National Research Nuclear University (MEPhI), 115409 Moscow, Russia
- Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroclaw, Poland
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Tilo Döppner
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Chengliang Lin
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | | | - Ronald Redmer
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - Heidi Reinholz
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
- School of Physics, University of Western Australia, WA 6009 Crawley, Australia
| |
Collapse
|
10
|
Faussurier G, Blancard C. Density effects on electronic configurations in dense plasmas. Phys Rev E 2018; 97:023206. [PMID: 29548182 DOI: 10.1103/physreve.97.023206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Indexed: 06/08/2023]
Abstract
We present a quantum mechanical model to describe the density effects on electronic configurations inside a plasma environment. Two different approaches are given by starting from a quantum average-atom model. Illustrations are shown for an aluminum plasma in local thermodynamic equilibrium at solid density and at a temperature of 100 eV and in the thermodynamic conditions of a recent experiment designed to characterize the effects of the ionization potential depression treatment. Our approach compares well with experiment and is consistent in that case with the approach of Stewart and Pyatt to describe the ionization potential depression rather than with the method of Ecker and Kröll.
Collapse
Affiliation(s)
- Gérald Faussurier
- Commissariat i I'Energie Atomique, DAM, DIF, F-91297 Arpajon, France
| | | |
Collapse
|
11
|
Zhang S, Driver KP, Soubiran F, Militzer B. First-principles equation of state and shock compression predictions of warm dense hydrocarbons. Phys Rev E 2017; 96:013204. [PMID: 29347225 DOI: 10.1103/physreve.96.013204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Indexed: 06/07/2023]
Abstract
We use path integral Monte Carlo and density functional molecular dynamics to construct a coherent set of equations of state (EOS) for a series of hydrocarbon materials with various C:H ratios (2:1, 1:1, 2:3, 1:2, and 1:4) over the range of 0.07-22.4gcm^{-3} and 6.7×10^{3}-1.29×10^{8}K. The shock Hugoniot curve derived for each material displays a single compression maximum corresponding to K-shell ionization. For C:H = 1:1, the compression maximum occurs at 4.7-fold of the initial density and we show radiation effects significantly increase the shock compression ratio above 2 Gbar, surpassing relativistic effects. The single-peaked structure of the Hugoniot curves contrasts with previous work on higher-Z plasmas, which exhibit a two-peak structure corresponding to both K- and L-shell ionization. Analysis of the electronic density of states reveals that the change in Hugoniot structure is due to merging of the L-shell eigenstates in carbon, while they remain distinct for higher-Z elements. Finally, we show that the isobaric-isothermal linear mixing rule for carbon and hydrogen EOS is a reasonable approximation with errors better than 1% for stellar-core conditions.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Kevin P Driver
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - François Soubiran
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA and Department of Astronomy, University of California, Berkeley, California 94720, USA
| |
Collapse
|
12
|
Driver KP, Militzer B. All-electron path integral Monte Carlo simulations of warm dense matter: application to water and carbon plasmas. PHYSICAL REVIEW LETTERS 2012; 108:115502. [PMID: 22540485 DOI: 10.1103/physrevlett.108.115502] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Indexed: 05/31/2023]
Abstract
We develop an all-electron path integral Monte Carlo method with free-particle nodes for warm dense matter and apply it to water and carbon plasmas. We thereby extend path integral Monte Carlo studies beyond hydrogen and helium to elements with core electrons. Path integral Monte Carlo results for pressures, internal energies, and pair-correlation functions compare well with density functional theory molecular dynamics calculations at temperatures of (2.5-7.5)×10(5) K, and both methods together form a coherent equation of state over a density-temperature range of 3-12 g/cm(3) and 10(4)-10(9) K.
Collapse
Affiliation(s)
- K P Driver
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
13
|
Massacrier G, Potekhin AY, Chabrier G. Equation of state for partially ionized carbon and oxygen mixtures at high temperatures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:056406. [PMID: 22181527 DOI: 10.1103/physreve.84.056406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Indexed: 05/31/2023]
Abstract
The equation of state (EOS) for partially ionized carbon, oxygen, and carbon-oxygen mixtures at temperatures 3×10(5)K is less than or approximately equal to T is less than or approximately equal to 3×10(6) K is calculated over a wide range of densities, using the method of free energy minimization in the framework of the chemical picture of plasmas. The free energy model is an improved extension of our model previously developed for pure carbon [Potekhin, Massacrier, and Chabrier, Phys. Rev. E 72, 046402 (2005)]. The internal partition functions of bound species are calculated by a self-consistent treatment of each ionization stage in the plasma environment taking into account pressure ionization. The long-range Coulomb interactions between ions and screening of the ions by free electrons are included using our previously published analytical model, recently improved, in particular for the case of mixtures. We also propose a simple but accurate method of calculation of the EOS of partially ionized binary mixtures based on detailed ionization balance calculations for pure substances.
Collapse
|
14
|
Arkhipov YV, Baimbetov FB, Davletov AE. Self-consistent chemical model of partially ionized plasmas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:016405. [PMID: 21405782 DOI: 10.1103/physreve.83.016405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/07/2010] [Indexed: 05/30/2023]
Abstract
A simple renormalization theory of plasma particle interactions is proposed. It primarily stems from generic properties of equilibrium distribution functions and allows one to obtain the so-called generalized Poisson-Boltzmann equation for an effective interaction potential of two chosen particles in the presence of a third one. The same equation is then strictly derived from the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for equilibrium distribution functions in the pair correlation approximation. This enables one to construct a self-consistent chemical model of partially ionized plasmas, correctly accounting for the close interrelation of charged and neutral components thereof. Minimization of the system free energy provides ionization equilibrium and, thus, permits one to study the plasma composition in a wide range of its parameters. Unlike standard chemical models, the proposed one allows one to study the system correlation functions and thereby to obtain an equation of state which agrees well with exact results of quantum-mechanical activity expansions. It is shown that the plasma and neutral components are strongly interrelated, which results in the short-range order formation in the corresponding subsystem. The mathematical form of the results obtained enables one to both firmly establish this fact and to determine a characteristic length of the structure formation. Since the cornerstone of the proposed self-consistent chemical model of partially ionized plasmas is an effective pairwise interaction potential, it immediately provides quite an efficient calculation scheme not only for thermodynamical functions but for transport coefficients as well.
Collapse
Affiliation(s)
- Yu V Arkhipov
- Department of Physics, Kazakh National University, Tole Bi 96, Almaty 050012, Kazakhstan
| | | | | |
Collapse
|
15
|
Baker GA. Equation of state for a partially ionized gas. III. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:031120. [PMID: 18517342 DOI: 10.1103/physreve.77.031120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Indexed: 05/26/2023]
Abstract
The derivation of equations of state for fluid phases of a partially ionized gas or plasma is addressed from a fundamental point of view. The results of the Thomas-Fermi model always yield pressures which are less than or equal to that of an ideal Fermi gas. On the other hand, the spherical cellular model shows significant "overpressure" relative to the ideal Fermi gas in certain regions of low density and low temperature. This effect is studied in considerable detail. A nonthermodynamic region, more or less overlapping the regions of overpressure, is found. It is characterized by a negative specific heat at constant volume. An independent electron model within a Z -electron cell is employed. The inadequacy of the wave function in the low-density, low-temperature nonthermodynamic region is shown to be the cause of this overpressure. Numerical examples of the theory for several elements (Li, N, Al, K, and Er) are reported. These results reduce in various limits of temperature and density to the expected behavior, except in the aforementioned region.
Collapse
Affiliation(s)
- George A Baker
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| |
Collapse
|