1
|
Beyer K, Strunz WT. Operational Work Fluctuation Theorem for Open Quantum Systems. PHYSICAL REVIEW LETTERS 2025; 134:140403. [PMID: 40279605 DOI: 10.1103/physrevlett.134.140403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/11/2025] [Indexed: 04/27/2025]
Abstract
The classical Jarzynski equality establishes an exact relation between the stochastic work performed on a system driven out of thermal equilibrium and the free energy difference in a corresponding quasistatic process. This fluctuation theorem bears experimental relevance, as it enables the determination of the free energy difference through the measurement of externally applied work in a nonequilibrium process. In the quantum case, the Jarzynski equality only holds if the measurement procedure of the stochastic work is drastically changed: it is replaced by a so-called two-point measurement scheme that requires the knowledge of the initial and final Hamiltonian and therefore lacks the predictive power for the free energy difference that the classical Jarzynski equation is known for. Here, we propose a quantum fluctuation theorem that is valid for externally measurable quantum work determined during the driving protocol. In contrast to the two-point measurement case, the theorem also applies to open quantum systems and the scenario can be realized without knowing the system Hamiltonian. Our fluctuation theorem comes in the form of an inequality and therefore only yields bounds to the true free energy difference. The inequality is saturated in the quasiclassical case of vanishing energy coherences at the beginning and at the end of the protocol. Thus, there is a clear quantum disadvantage.
Collapse
Affiliation(s)
- Konstantin Beyer
- Stevens Institute of Technology, Department of Physics, Hoboken, New Jersey 07030, USA
- TUD Dresden University of Technology, Institute of Theoretical Physics, 01062, Dresden, Germany
| | - Walter T Strunz
- TUD Dresden University of Technology, Institute of Theoretical Physics, 01062, Dresden, Germany
| |
Collapse
|
2
|
Liao YH, Jun Y, Lai PY. Second-law violating events are not rare in nonequilibrium nonsteady states. Phys Rev E 2025; 111:L022103. [PMID: 40103034 DOI: 10.1103/physreve.111.l022103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/27/2025] [Indexed: 03/20/2025]
Abstract
For nonequilibrium systems in which fluctuations are important, it is well established that there can be events that violate the second law of thermodynamics on the trajectory level. For nonequilibrium steady-states, these second-law violating events are rare, but this may not be true for far-from-equilibrium nonsteady processes. In the paradigm system of a Brownian particle trapped under a time-dependent compressing potential, we demonstrate that second-law violating trajectories can outnumber the second-law obeying ones. In particular, for abrupt compressing harmonic and anharmonic potentials, analytic expressions for the total entropy production distribution and the fraction of second-law violating events are derived to show explicitly that second-law violating events can be of significant majority. These results are further confirmed in experiments.
Collapse
Affiliation(s)
- Yi-Hung Liao
- National Central University, Department of Physics and Center for Complex Systems, Taoyuan City 320, Taiwan
| | - Yonggun Jun
- National Central University, Department of Physics and Center for Complex Systems, Taoyuan City 320, Taiwan
| | - Pik-Yin Lai
- National Central University, Department of Physics and Center for Complex Systems, Taoyuan City 320, Taiwan
- National Center for Theoretical Sciences, Physics Division, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Zhang X, Shi T, Quan HT. Exact work distribution and Jarzynski's equality of a relativistic particle in an expanding piston. Phys Rev E 2024; 110:024128. [PMID: 39295019 DOI: 10.1103/physreve.110.024128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/25/2024] [Indexed: 09/21/2024]
Abstract
We study the nonequilibrium work in a pedagogical model of relativistic ideal gas. We obtain the exact work distribution and verify Jarzynski's equality. In the nonrelativistic limit, our results recover the nonrelativistic results of Lua and Grosberg [J. Phys. Chem. B 109, 6805 (2005)1520-610610.1021/jp0455428]. We also find that, unlike the nonrelativistic case, the work distribution no longer has zeros and the number of collisions in this relativistic gas model is finite. In addition, based on an analysis of the experimental parameters, we conclude that it is difficult to detect the relativistic effects of the work distribution of the ideal gas in a piston system with the current experimental techniques.
Collapse
|
4
|
Debiossac M, Kiesel N, Lutz E. Convergence to the Asymptotic Large Deviation Limit. PHYSICAL REVIEW LETTERS 2024; 133:047101. [PMID: 39121406 DOI: 10.1103/physrevlett.133.047101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/14/2024] [Indexed: 08/11/2024]
Abstract
Large deviation theory offers a powerful and general statistical framework to study the asymptotic dynamical properties of rare events. The application of the formalism to concrete experimental situations is, however, often restricted by finite statistics. Data might not suffice to reach the asymptotic regime or judge whether large deviation estimators converge at all. We here experimentally study the large deviation properties of the stochastic work and heat of a levitated nanoparticle subjected to nonequilibrium feedback control. This setting allows us to determine for each quantity the convergence domain of the large deviation estimators using a criterion that does not require the knowledge of the probability distribution. By extracting both the asymptotic exponential decay and the subexponential prefactors, we demonstrate that singular prefactors significantly restrict the convergence characteristics close to the singularity. Our results provide unique insight into the approach to the asymptotic large deviation limit and underscore the pivotal role of singular prefactors.
Collapse
|
5
|
Whitelam S. Free-energy estimates from nonequilibrium trajectories under varying-temperature protocols. Phys Rev E 2024; 110:014142. [PMID: 39160951 DOI: 10.1103/physreve.110.014142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/10/2024] [Indexed: 08/21/2024]
Abstract
The Jarzynski equality allows the calculation of free-energy differences using values of work measured from nonequilibrium trajectories. The number of trajectories required to accurately estimate free-energy differences in this way grows sharply with the size of work fluctuations, motivating the search for protocols that perform desired transformations with minimum work. However, protocols of this nature can involve varying temperature, to which the Jarzynski equality does not apply. We derive a variant of the Jarzynski equality that applies to varying-temperature protocols, and show that it can have better convergence properties than the standard version of the equality. We derive this modified equality and the associated fluctuation relation within the framework of Markovian stochastic dynamics, complementing related derivations done within the framework of Hamiltonian dynamics.
Collapse
|
6
|
Bian H, Shao X, Cai W, Fu H. Understanding the Reversible Binding of a Multichain Protein-Protein Complex through Free-Energy Calculations. J Phys Chem B 2024; 128:3598-3604. [PMID: 38574232 DOI: 10.1021/acs.jpcb.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
We demonstrate that the binding affinity of a multichain protein-protein complex, insulin dimer, can be accurately predicted using a streamlined route of standard binding free-energy calculations. We find that chains A and C, which do not interact directly during binding, stabilize the insulin monomer structures and reduce the binding affinity of the two monomers, therefore enabling their reversible association. Notably, we confirm that although classical methods can estimate the binding affinity of the insulin dimer, conventional molecular dynamics, enhanced sampling algorithms, and classical geometrical routes of binding free-energy calculations may not fully capture certain aspects of the role played by the noninteracting chains in the binding dynamics. Therefore, this study not only elucidates the role of noninteracting chains in the reversible binding of the insulin dimer but also offers a methodological guide for investigating the reversible binding of multichain protein-protein complexes utilizing streamlined free-energy calculations.
Collapse
Affiliation(s)
- Hengwei Bian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Haohao Fu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Karrenbrock M, Rizzi V, Procacci P, Gervasio FL. Addressing Suboptimal Poses in Nonequilibrium Alchemical Calculations. J Phys Chem B 2024; 128:1595-1605. [PMID: 38323915 DOI: 10.1021/acs.jpcb.3c06516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Alchemical transformations can be used to quantitatively estimate absolute binding free energies at a reasonable computational cost. However, most of the approaches currently in use require knowledge of the correct (crystallographic) pose. In this paper, we present a combined Hamiltonian replica exchange nonequilibrium alchemical method that allows us to reliably calculate absolute binding free energies, even when starting from suboptimal initial binding poses. Performing a preliminary Hamiltonian replica exchange enhances the sampling of slow degrees of freedom of the ligand and the target, allowing the system to populate the correct binding pose when starting from an approximate docking pose. We apply the method on 6 ligands of the first bromodomain of the BRD4 bromodomain-containing protein. For each ligand, we start nonequilibrium alchemical transformations from both the crystallographic pose and the top-scoring docked pose that are often significantly different. We show that the method produces statistically equivalent binding free energies, making it a useful tool for computational drug discovery pipelines.
Collapse
Affiliation(s)
- Maurice Karrenbrock
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland
| | - Valerio Rizzi
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland
| | - Piero Procacci
- Chemistry Department, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Francesco Luigi Gervasio
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
- Chemistry Department, University College London (UCL), WC1E 6BT London, U.K
- Swiss Bioinformatics Institute, University of Geneva, CH-1206 Geneva, Switzerland
| |
Collapse
|
8
|
Buffoni L, Coghi F, Gherardini S. Generalized Landauer bound from absolute irreversibility. Phys Rev E 2024; 109:024138. [PMID: 38491573 DOI: 10.1103/physreve.109.024138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/01/2024] [Indexed: 03/18/2024]
Abstract
In this work, we introduce a generalization of the Landauer bound for erasure processes that stems from absolutely irreversible dynamics. Assuming that the erasure process is carried out in an absolutely irreversible way so that the probability of observing some trajectories is zero in the forward process but finite in the reverse process, we derive a generalized form of the bound for the average erasure work, which is valid also for imperfect erasure and asymmetric bits. The generalized bound obtained is tighter than or, at worst, as tight as existing ones. Our theoretical predictions are supported by numerical experiments and the comparison with data from previous works.
Collapse
Affiliation(s)
- Lorenzo Buffoni
- Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Francesco Coghi
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden
| | - Stefano Gherardini
- Istituto Nazionale di Ottica-CNR, Area Science Park, Basovizza, I-34149 Trieste, Italy
- SISSA, via Bonomea 265, 34136 Trieste, Italy
- LENS, University of Florence, via Carrara 1, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Schöller A, Woodcock HL, Boresch S. Exploring Routes to Enhance the Calculation of Free Energy Differences via Non-Equilibrium Work SQM/MM Switching Simulations Using Hybrid Charge Intermediates between MM and SQM Levels of Theory or Non-Linear Switching Schemes. Molecules 2023; 28:4006. [PMID: 37241747 PMCID: PMC10222338 DOI: 10.3390/molecules28104006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Non-equilibrium work switching simulations and Jarzynski's equation are a reliable method for computing free energy differences, ΔAlow→high, between two levels of theory, such as a pure molecular mechanical (MM) and a quantum mechanical/molecular mechanical (QM/MM) description of a system of interest. Despite the inherent parallelism, the computational cost of this approach can quickly become very high. This is particularly true for systems where the core region, the part of the system to be described at different levels of theory, is embedded in an environment such as explicit solvent water. We find that even for relatively simple solute-water systems, switching lengths of at least 5 ps are necessary to compute ΔAlow→high reliably. In this study, we investigate two approaches towards an affordable protocol, with an emphasis on keeping the switching length well below 5 ps. Inserting a hybrid charge intermediate state with modified partial charges, which resembles the charge distribution of the desired high level, makes it possible to obtain reliable calculations with 2 ps switches. Attempts using step-wise linear switching paths, on the other hand, did not lead to improvement, i.e., a faster convergence for all systems. To understand these findings, we analyzed the solutes' properties as a function of the partial charges used and the number of water molecules in direct contact with the solute, and studied the time needed for water molecules to reorient themselves upon a change in the solute's charge distribution.
Collapse
Affiliation(s)
- Andreas Schöller
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währingerstr. 42, A-1090 Vienna, Austria
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., CHE205, Tampa, FL 33620-5250, USA;
| | - Stefan Boresch
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria
| |
Collapse
|
10
|
Kuznets-Speck B, Limmer DT. Inferring equilibrium transition rates from nonequilibrium protocols. Biophys J 2023; 122:1659-1664. [PMID: 36964656 PMCID: PMC10183322 DOI: 10.1016/j.bpj.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/08/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
We develop a theory for inferring equilibrium transition rates from trajectories driven by a time-dependent force using results from stochastic thermodynamics. Applying the Kawasaki relation to approximate the nonequilibrium distribution function in terms of the equilibrium distribution function and the excess dissipation, we formulate a nonequilibrium transition state theory to estimate the rate enhancement over the equilibrium rate due to the nonequilibrium protocol. We demonstrate the utility of our theory in examples of pulling of harmonically trapped particles in one and two dimensions, as well as a semiflexible polymer with a reactive linker in three dimensions. We expect our purely thermodynamic approach will find use in both molecular simulation and force spectroscopy experiments.
Collapse
Affiliation(s)
| | - David T Limmer
- Chemistry Department, University of California, Berkeley, Berkeley, California; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California; Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California; Kavli Energy NanoSciences Institute, University of California, Berkeley, Berkeley, California.
| |
Collapse
|
11
|
Semaan MT, Crutchfield JP. First and second laws of information processing by nonequilibrium dynamical states. Phys Rev E 2023; 107:054132. [PMID: 37329111 DOI: 10.1103/physreve.107.054132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
The averaged steady-state surprisal links a driven stochastic system's information processing to its nonequilibrium thermodynamic response. By explicitly accounting for the effects of nonequilibrium steady states, a decomposition of the surprisal results in an information processing first law that extends and tightens-to strict equalities-various information processing second laws. Applying stochastic thermodynamics' integral fluctuation theorems then shows that the decomposition reduces to the second laws under appropriate limits. In unifying them, the first law paves the way to identifying the mechanisms by which nonequilibrium steady-state systems leverage information-bearing degrees of freedom to extract heat. To illustrate, we analyze an autonomous Maxwellian information ratchet that tunably violates detailed balance in its effective dynamics. This demonstrates how the presence of nonequilibrium steady states qualitatively alters an information engine's allowed functionality.
Collapse
Affiliation(s)
- Mikhael T Semaan
- Complexity Sciences Center and Department of Physics and Astronomy, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
- Science Research Initiative, College of Science, University of Utah, Salt Lake City, Utah 84112, USA
| | - James P Crutchfield
- Complexity Sciences Center and Department of Physics and Astronomy, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
12
|
Semaan MT, Crutchfield JP. Homeostatic and adaptive energetics: Nonequilibrium fluctuations beyond detailed balance in voltage-gated ion channels. Phys Rev E 2022; 106:044410. [PMID: 36397574 DOI: 10.1103/physreve.106.044410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Stochastic thermodynamics has largely succeeded in characterizing both equilibrium and far-from-equilibrium phenomena. Yet many opportunities remain for application to mesoscopic complex systems-especially biological ones-whose effective dynamics often violate detailed balance and whose microscopic degrees of freedom are often unknown or intractable. After reviewing excess and housekeeping energetics-the adaptive and homeostatic components of a system's dissipation-we extend stochastic thermodynamics with a trajectory class fluctuation theorem for nonequilibrium steady-state, nondetailed-balanced complex systems. We then take up the neurobiological examples of voltage-gated sodium and potassium ion channels to apply and illustrate the theory, elucidating their nonequilibrium behavior under a biophysically plausible action potential drive. These results uncover challenges for future experiments and highlight the progress possible understanding the thermodynamics of complex systems-without exhaustive knowledge of every underlying degree of freedom.
Collapse
Affiliation(s)
- Mikhael T Semaan
- Complexity Sciences Center and Department of Physics and Astronomy, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | - James P Crutchfield
- Complexity Sciences Center and Department of Physics and Astronomy, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
13
|
Debiossac M, Rosinberg ML, Lutz E, Kiesel N. Non-Markovian Feedback Control and Acausality: An Experimental Study. PHYSICAL REVIEW LETTERS 2022; 128:200601. [PMID: 35657900 DOI: 10.1103/physrevlett.128.200601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/31/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Causality is an important assumption underlying nonequilibrium generalizations of the second law of thermodynamics known as fluctuation relations. We here experimentally study the nonequilibrium statistical properties of the work and of the entropy production for an optically trapped, underdamped nanoparticle continuously subjected to a time-delayed feedback control. Whereas the non-Markovian feedback depends on the past position of the particle for a forward trajectory, it depends on its future position for a time-reversed path, and is therefore acausal. In the steady-state regime, we show that the corresponding fluctuation relations in the long-time limit exhibit a clear signature of this acausality, even though the time-reversed dynamics is not physically realizable.
Collapse
Affiliation(s)
- Maxime Debiossac
- University of Vienna, Faculty of Physics, VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Martin Luc Rosinberg
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Eric Lutz
- Institute for Theoretical Physics I, University of Stuttgart, D-70550 Stuttgart, Germany
| | - Nikolai Kiesel
- University of Vienna, Faculty of Physics, VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| |
Collapse
|
14
|
Ishida N, Hasegawa Y. Accelerated Jarzynski estimator with deterministic virtual trajectories. Phys Rev E 2022; 105:054120. [PMID: 35706240 DOI: 10.1103/physreve.105.054120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
The Jarzynski estimator is a powerful tool that uses nonequilibrium statistical physics to numerically obtain partition functions of probability distributions. The estimator reconstructs partition functions with trajectories of the simulated Langevin dynamics through the Jarzynski equality. However, the original estimator suffers from slow convergence because it depends on rare trajectories of stochastic dynamics. In this paper, we present a method to significantly accelerate the convergence by introducing deterministic virtual trajectories generated in augmented state space under the Hamiltonian dynamics. We theoretically show that our approach achieves second-order acceleration compared to a naive estimator with the Langevin dynamics and zero variance estimation on harmonic potentials. We also present numerical experiments on three multimodal distributions and a practical example in which the proposed method outperforms the conventional method, and we provide theoretical explanations.
Collapse
Affiliation(s)
- Nobumasa Ishida
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
15
|
Varillas J, Ciccotti G, Alcalá J, Rondoni L. Jarzynski equality on work and free energy: Crystal indentation as a case study. J Chem Phys 2022; 156:114118. [DOI: 10.1063/5.0071001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mathematical relations concerning particle systems require knowledge of the applicability conditions to become physically relevant and not merely formal. We illustrate this fact through the analysis of the Jarzynski equality (JE), whose derivation for Hamiltonian systems suggests that the equilibrium free-energy variations can be computational or experimentally determined in almost any kind of non-equilibrium processes. This apparent generality is surprising in a mechanical theory. Analytically, we show that the quantity called “work” in the Hamiltonian derivation of the JE is neither a thermodynamic quantity nor mechanical work, except in special circumstances to be singularly assessed. Through molecular dynamics simulations of elastic and plastic deformations induced via nano-indentation of crystalline surfaces that fall within the formal framework of the JE, we illustrate that the JE cannot be verified and that the results of this verification are process dependent.
Collapse
Affiliation(s)
- Javier Varillas
- Institute of Thermomechanics, Czech Academy of Sciences, 18200 Prague, Czechia
| | - Giovanni Ciccotti
- Istituto per le Applicazioni del Calcolo “Mauro Picone”, IAC-CNR, Rome, Italy
- Dipartimento di Fisica, Università di Roma “La Sapienza”, Rome, Italy
- School of Physics, University College Dublin (UCD), Dublin, Ireland
| | - Jorge Alcalá
- InSup, ETSEIB, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain
| | - Lamberto Rondoni
- Dipartimento di Scienze Matematiche, Politecnico di Torino, 10125 Turin, Italy
- INFN, Sezione di Torino, Via P. Giuria 1, 10125 Turin, Italy
| |
Collapse
|
16
|
Hosseini AN, Lund M, Ejtehadi MR. A modified Jarzynski free-energy estimator to eliminate non-conservative forces and its application in nanoparticle-membrane interactions. Phys Chem Chem Phys 2022; 24:3647-3654. [PMID: 35103740 DOI: 10.1039/d1cp05218g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational methods to understand interactions in bio-complex systems are however limited to time-scales typically much shorter than in Nature. For example, on the nanoscale level, interactions between nanoparticles (NPs)/molecules/peptides and membranes are central in complex biomolecular processes such as membrane-coated NPs or cellular uptake. This can be remedied by the application of e.g. Jarzynski's equality where thermodynamic properties are extracted from non-equilibrium simulations. Although, the out of equilibrium work leads to non-conservative forces. We here propose a correction Pair Forces method, that removes these forces. Our proposed method is based on the calculation of pulling forces in backward and forward directions for the Jarzynski free-energy estimator using steered molecular dynamics simulation. Our results show that this leads to much improvement for NP-membrane translocation free energies. Although here we have demonstrated the application of the method in molecular dynamics simulation, it could be applied for experimental approaches.
Collapse
Affiliation(s)
- Atiyeh Najla Hosseini
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran.
| | - Mikael Lund
- Division of Theoretical Chemistry, Lund University, Lund, Sweden.,LINXS - Lund Institute for Advanced Neutral and X-ray Scattering, Lund University, Sweden.
| | | |
Collapse
|
17
|
Katznelson H, Rahav S. Nonuniform convergence in moment expansions of integral work relations. Phys Rev E 2022; 105:024123. [PMID: 35291177 DOI: 10.1103/physreve.105.024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Exponential averages that appear in integral fluctuation theorems can be recast as a sum over moments of thermodynamic observables. We use two examples to show that such moment series can exhibit nonuniform convergence in certain singular limits. The first example is a simple model of a process with measurement and feedback. In this example, the limit of interest is that of error-free measurements. The second system we study is an ideal gas particle inside an (infinitely) fast expanding piston. Both examples show qualitative similarities; the low-order moments are close to their limiting value, while high-order moments strongly deviate from their limit. As the limit is approached the transition between the two groups of moments is pushed toward higher and higher moments. Our findings highlight the importance of the ordering of limits in certain nonequilibrium-related calculations.
Collapse
Affiliation(s)
- Hila Katznelson
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Saar Rahav
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
18
|
Jin S, Wang JN, Xue Y, Li P, Mei Y. Selectivity of parvalbumin B protein binding to Ca2+ and Mg2+ at an ab initio QM/MM level using the reference-potential method. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2109176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Shuwei Jin
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Jia-Ning Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yuanfei Xue
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Pengfei Li
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- Silicon Therapeutics (Suzhou) Co., Ltd., Suzhou 215000, China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
19
|
Bal KM. Reweighted Jarzynski Sampling: Acceleration of Rare Events and Free Energy Calculation with a Bias Potential Learned from Nonequilibrium Work. J Chem Theory Comput 2021; 17:6766-6774. [PMID: 34714088 DOI: 10.1021/acs.jctc.1c00574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We introduce a simple enhanced sampling approach for the calculation of free energy differences and barriers along a one-dimensional reaction coordinate. First, a small number of short nonequilibrium simulations are carried out along the reaction coordinate, and the Jarzynski equality is used to learn an approximate free energy surface from the nonequilibrium work distribution. This free energy estimate is represented in a compact form as an artificial neural network and used as an external bias potential to accelerate rare events in a subsequent molecular dynamics simulation. The final free energy estimate is then obtained by reweighting the equilibrium probability distribution of the reaction coordinate sampled under the influence of the external bias. We apply our reweighted Jarzynski sampling recipe to four processes of varying scales and complexities─spanning chemical reaction in the gas phase, pair association in solution, and droplet nucleation in supersaturated vapor. In all cases, we find reweighted Jarzynski sampling to be a very efficient strategy, resulting in rapid convergence of the free energy to high precision.
Collapse
Affiliation(s)
- Kristof M Bal
- Department of Chemistry and NANOlab Center of Excellence, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
20
|
Núñez-Franco R, Peccati F, Jiménez-Osés G. A Computational Perspective on Molecular Recognition by Galectins. Curr Med Chem 2021; 29:1219-1231. [PMID: 34348610 DOI: 10.2174/0929867328666210804093058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
This article presents an overview of recent computational studies dedicated to the analysis of binding between galectins and small-molecule ligands. We first present a summary of the most popular simulation techniques adopted for calculating binding poses and binding energies, and then discuss relevant examples reported in the literature for the three main classes of galectins (dimeric, tandem and chimera). We show that simulation of galectin-ligand interactions is a mature field which has proven invaluable for completing and unraveling experimental observations. Future perspectives to further improve the accuracy and cost-effectiveness of existing computational approaches will involve the development of new schemes to account for solvation and entropy effects, which represent the main current limitations to the accuracy of computational results.
Collapse
Affiliation(s)
- Reyes Núñez-Franco
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio. Spain
| | - Francesca Peccati
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio. Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio. Spain
| |
Collapse
|
21
|
Callea L, Bonati L, Motta S. Metadynamics-Based Approaches for Modeling the Hypoxia-Inducible Factor 2α Ligand Binding Process. J Chem Theory Comput 2021; 17:3841-3851. [PMID: 34082524 PMCID: PMC8280741 DOI: 10.1021/acs.jctc.1c00114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Several methods based
on enhanced-sampling molecular dynamics have
been proposed for studying ligand binding processes. Here, we developed
a protocol that combines the advantages of steered molecular dynamics
(SMD) and metadynamics. While SMD is proposed for investigating possible
unbinding pathways of the ligand and identifying the preferred one,
metadynamics, with the path collective variable (PCV) formalism, is
suggested to explore the binding processes along the pathway defined
on the basis of SMD, by using only two CVs. We applied our approach
to the study of binding of two known ligands to the hypoxia-inducible
factor 2α, where the buried binding cavity makes simulation
of the process a challenging task. Our approach allowed identification
of the preferred entrance pathway for each ligand, highlighted the
features of the bound and intermediate states in the free-energy surface,
and provided a binding affinity scale in agreement with experimental
data. Therefore, it seems to be a suitable tool for elucidating ligand
binding processes of similar complex systems.
Collapse
Affiliation(s)
- Lara Callea
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
22
|
Baumann HM, Gapsys V, de Groot BL, Mobley DL. Challenges Encountered Applying Equilibrium and Nonequilibrium Binding Free Energy Calculations. J Phys Chem B 2021; 125:4241-4261. [PMID: 33905257 PMCID: PMC8240641 DOI: 10.1021/acs.jpcb.0c10263] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Binding free energy calculations have become increasingly valuable to drive decision making in drug discovery projects. However, among other issues, inadequate sampling can reduce accuracy, limiting the value of the technique. In this paper, we apply absolute binding free energy calculations to ligands binding to T4 lysozyme L99A and HSP90 using equilibrium and nonequilibrium approaches. We highlight sampling problems encountered in these systems, such as slow side chain rearrangements and slow changes of water placement upon ligand binding. These same types of challenges are also likely to show up in other protein-ligand systems, and we propose some strategies to diagnose and test for such problems in alchemical free energy calculations. We also explore similarities and differences in how the equilibrium and the nonequilibrium approaches handle these problems. Our results show the large amount of work still to be done to make free energy calculations robust and reliable and provide insight for future research in this area.
Collapse
Affiliation(s)
- Hannah M Baumann
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| | - Vytautas Gapsys
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
- Department of Chemistry, University of California, Irvine, California 92617, United States
| |
Collapse
|
23
|
Huang S, Sun C, Purohit PK, Reina C. Harnessing fluctuation theorems to discover free energy and dissipation potentials from non-equilibrium data. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2021; 149:104323. [PMID: 33612859 PMCID: PMC7894616 DOI: 10.1016/j.jmps.2021.104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Jarzynski relation, as an equality form of the second law of thermodynamics, represents an exact thermodynamic statement that is valid arbitrarily far away from equilibrium. This remarkable relation directly links the equilibrium free energy difference between two states and the probability distribution of the work done along a process that drives the system from one state to the other. Here, we leverage the Jarzynski equality and a local equilibrium assumption, to go beyond the calculation of free energy differences and also extract the dissipation potential from additional measurements of kinematic field variables (strain and velocity fields). The proposed strategy is exemplified over pulling experiments of mass-spring models obeying overdamped Langevin dynamics, which is a prototype for nanorods, fibrous macro-molecules and the Rouse model of polymers. Different interaction potentials, fluid viscosities and bath temperatures are studied, so as to intrinsically control how close or far away the system is from equilibrium. The data-inferred continuum models are then validated against processes governed by different pulling protocols, thereby demonstrating their predictive capability. The methods presented here represent a first step toward full material characterization from non-equilibrium data of macroscopic observables, which could potentially be obtained from experimental observations.
Collapse
|
24
|
Li G, Tu ZC. Equilibrium free-energy differences from a linear nonequilibrium equality. Phys Rev E 2021; 103:032146. [PMID: 33862756 DOI: 10.1103/physreve.103.032146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/04/2021] [Indexed: 11/07/2022]
Abstract
Extracting equilibrium information from nonequilibrium measurements is a challenge task of great importance in understanding the thermodynamic properties of physical, chemical, and biological systems. The discovery of the Jarzynski equality illumines the way to estimate the equilibrium free-energy difference from the work performed in nonequilibrium driving processes. However, the nonlinear (exponential) relation causes the poor convergence of the Jarzynski equality. Here, we propose a concise method to estimate the free-energy difference through a linear nonequilibrium equality which inherently converges faster than nonlinear nonequilibrium equalities. This linear nonequilibrium equality relies on an accelerated isothermal process which is realized by using a unified variational approach, named variational shortcuts to isothermality. We apply our method to an underdamped Brownian particle moving in a double-well potential. The simulations confirm that the method can be used to accurately estimate the free-energy difference with high efficiency. Especially during fast driving processes with high dissipation, the method can improve the accuracy by more than an order of magnitude compared with the estimator based on the nonlinear nonequilibrium equality.
Collapse
Affiliation(s)
- Geng Li
- CAS Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.,Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Z C Tu
- Department of Physics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
25
|
Martins J, Defaveri L, Soares-Pinto DO, Queirós SMD, Morgado WAM. Non-Markovianity, entropy production, and Jarzynski equality. Phys Rev E 2021; 103:022108. [PMID: 33735963 DOI: 10.1103/physreve.103.022108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/13/2021] [Indexed: 11/07/2022]
Abstract
We explore the role a non-Markovian memory kernel plays on information exchange and entropy production in the context of a external work protocol. The Jarzynski equality is shown to hold for both the harmonic and the nonharmonic models. We observe the memory function acts as an information pump, recovering part of the information lost to the thermal reservoir as a consequence of the nonequilibrium work protocol. The pumping action occurs for both the harmonic and nonharmonic cases. Unexpectedly, we found that the harmonic model does not produce entropy, regardless of the work protocol. The presence of even a small amount of nonlinearity recovers the more normal entropy producing behavior, for out-of-equilibrium protocols.
Collapse
Affiliation(s)
- Jackes Martins
- Departamento de Física, Pontifícia Universidade Católica, 22451-900, Rio de Janeiro, Brazil
| | - Lucianno Defaveri
- Departamento de Física, Pontifícia Universidade Católica, 22451-900, Rio de Janeiro, Brazil
| | - Diogo O Soares-Pinto
- Instituto de Física de São Carlos, Universidade de São Paulo CP 369, 13560-970, São Carlos, São Paulo, Brazil
| | - Sílvio M Duarte Queirós
- Centro Brasileiro de Pesquisas Físicas, Rua Dr Xavier Sigaud, 150, 22290-180 Rio de Janeiro-RJ, Brazil.,National Institute of Science and Technology for Complex Systems.,i3N, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Welles A M Morgado
- Departamento de Física, Pontifícia Universidade Católica, 22451-900, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Complex Systems
| |
Collapse
|
26
|
Lin L, Zou H, Li W, Xu LY, Li EM, Dong G. Redox Potentials of Disulfide Bonds in LOXL2 Studied by Nonequilibrium Alchemical Simulation. Front Chem 2021; 9:797036. [PMID: 34970534 PMCID: PMC8713139 DOI: 10.3389/fchem.2021.797036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) is a metalloenzyme that catalyzes the oxidative deamination ε-amino group of lysine. It is found that LOXL2 is a promotor for the metastasis and invasion of cancer cells. Disulfide bonds are important components in LOXL2, and they play a stabilizing role for protein structure or a functional role for regulating protein bioactivity. The redox potential of disulfide bond is one important property to determine the functional role of disulfide bond. In this study, we have calculated the reduction potential of all the disulfide bonds in LOXL2 by non-equilibrium alchemical simulations. Our results show that seven of seventeen disulfide bonds have high redox potentials between -182 and -298 mV and could have a functional role, viz., Cys573-Cys625, Cys579-Cys695, Cys657-Cys673, and Cys663-Cys685 in the catalytic domain, Cys351-Cys414, Cys464-Cys530, and Cys477-Cys543 in the scavenger receptor cysteine-rich (SRCR) domains. The disulfide bond of Cys351-Cys414 is predicted to play an allosteric function role, which could affect the metastasis and invasion of cancer cells. Other functional bonds have a catalytic role related to enzyme activity. The rest of disulfide bonds are predicted to play a structural role. Our study provides an important insight for the classification of disulfide bonds in LOXL2 and can be utilized for the drug design that targets the cysteine residues in LOXL2.
Collapse
Affiliation(s)
- Lirui Lin
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, China
| | - Haiying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Cancer Research Center, Shantou University Medical College, Shantou, China
- *Correspondence: Li-Yan Xu, ; En-Min Li, ; Geng Dong,
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- *Correspondence: Li-Yan Xu, ; En-Min Li, ; Geng Dong,
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, China
- *Correspondence: Li-Yan Xu, ; En-Min Li, ; Geng Dong,
| |
Collapse
|
27
|
Wirnsberger P, Ballard AJ, Papamakarios G, Abercrombie S, Racanière S, Pritzel A, Jimenez Rezende D, Blundell C. Targeted free energy estimation via learned mappings. J Chem Phys 2020; 153:144112. [PMID: 33086827 DOI: 10.1063/5.0018903] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Free energy perturbation (FEP) was proposed by Zwanzig [J. Chem. Phys. 22, 1420 (1954)] more than six decades ago as a method to estimate free energy differences and has since inspired a huge body of related methods that use it as an integral building block. Being an importance sampling based estimator, however, FEP suffers from a severe limitation: the requirement of sufficient overlap between distributions. One strategy to mitigate this problem, called Targeted FEP, uses a high-dimensional mapping in configuration space to increase the overlap of the underlying distributions. Despite its potential, this method has attracted only limited attention due to the formidable challenge of formulating a tractable mapping. Here, we cast Targeted FEP as a machine learning problem in which the mapping is parameterized as a neural network that is optimized so as to increase the overlap. We develop a new model architecture that respects permutational and periodic symmetries often encountered in atomistic simulations and test our method on a fully periodic solvation system. We demonstrate that our method leads to a substantial variance reduction in free energy estimates when compared against baselines, without requiring any additional data.
Collapse
|
28
|
Roussey NM, Dickson A. Enhanced Jarzynski free energy calculations using weighted ensemble. J Chem Phys 2020; 153:134116. [PMID: 33032408 PMCID: PMC7544513 DOI: 10.1063/5.0020600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
The free energy of transitions between stable states is the key thermodynamic quantity that governs the relative probabilities of the forward and reverse reactions and the ratio of state probabilities at equilibrium. The binding free energy of a drug and its receptor is of particular interest, as it serves as an optimization function for drug design. Over the years, many computational methods have been developed to calculate binding free energies, and while many of these methods have a long history, issues such as convergence of free energy estimates and the projection of a binding process onto order parameters remain. Over 20 years ago, the Jarzynski equality was derived with the promise to calculate equilibrium free energies by measuring the work applied to short nonequilibrium trajectories. However, these calculations were found to be dominated by trajectories with low applied work that occur with extremely low probability. Here, we examine the combination of weighted ensemble algorithms with the Jarzynski equality. In this combined method, an ensemble of nonequilibrium trajectories are run in parallel, and cloning and merging operations are used to preferentially sample low-work trajectories that dominate the free energy calculations. Two additional methods are also examined: (i) a novel weighted ensemble resampler that samples trajectories directly according to their importance to the work of work and (ii) the diffusion Monte Carlo method using the applied work as the selection potential. We thoroughly examine both the accuracy and efficiency of unbinding free energy calculations for a series of model Lennard-Jones atom pairs with interaction strengths ranging from 2 kcal/mol to 20 kcal/mol. We find that weighted ensemble calculations can more efficiently determine accurate binding free energies, especially for deeper Lennard-Jones well depths.
Collapse
Affiliation(s)
- Nicole M. Roussey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48823, USA
| | - Alex Dickson
- Author to whom correspondence should be addressed:
| |
Collapse
|
29
|
Chae MK, Kim Y, Lee NK, Johner A, Park JM. Free energy measurements by the generalized fluctuation theorems: Theory and numerical study of a model filament. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:62. [PMID: 33006688 DOI: 10.1140/epje/i2020-11984-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
We measure the free energy of a model filament, which undergoes deformations and structural transitions, as a function of its extension, in silico. We perform Brownian Dynamics (BD) simulations of pulling experiments at various speeds, following a protocol close to experimental ones. The results from the fluctuation theorems are compared with the estimates from Monte Carlo (MC) simulation, where the rugged free energy landscape is produced by the density of states method. The fluctuation theorems (FT) give accurate estimates of the free energy up to moderate pulling speeds. At higher pulling speeds, the work distributions do not efficiently sample the domain of small work and FT slightly overestimates free energy. In order to comprehend the differences, we analyze the work distributions from the BD simulations in the framework of trajectory thermodynamics and propose the generalized fluctuation theorems that take into account the information (relative entropy) evaluated in the expanded phase space. The measured work - free energy relation is consistent with the results obtained from the generalized fluctuation theorems. We discuss operational methods to improve the estimates at high pulling speed.
Collapse
Affiliation(s)
- Min-Kyung Chae
- Department of Physics and Astronomy, Sejong University, 05006, Seoul, South Korea
| | - Yunha Kim
- Department of Physics and Astronomy, Sejong University, 05006, Seoul, South Korea
| | - Nam-Kyung Lee
- Department of Physics and Astronomy, Sejong University, 05006, Seoul, South Korea.
- Institute Charles Sadron, CNRS 23 Rue du Loess, 67034, Strasbourg cedex 2, France.
| | - A Johner
- Institute Charles Sadron, CNRS 23 Rue du Loess, 67034, Strasbourg cedex 2, France
| | - Jeong-Man Park
- Department of Physics, The Catholic University of Korea, 14662, Bucheon, South Korea
| |
Collapse
|
30
|
Genthon A, Lacoste D. Fluctuation relations and fitness landscapes of growing cell populations. Sci Rep 2020; 10:11889. [PMID: 32681104 PMCID: PMC7367869 DOI: 10.1038/s41598-020-68444-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/25/2020] [Indexed: 11/20/2022] Open
Abstract
We construct a pathwise formulation of a growing population of cells, based on two different samplings of lineages within the population, namely the forward and backward samplings. We show that a general symmetry relation, called fluctuation relation relates these two samplings, independently of the model used to generate divisions and growth in the cell population. These relations lead to estimators of the population growth rate, which can be very efficient as we demonstrate by an analysis of a set of mother machine data. These fluctuation relations lead to general and important inequalities between the mean number of divisions and the doubling time of the population. We also study the fitness landscape, a concept based on the two samplings mentioned above, which quantifies the correlations between a phenotypic trait of interest and the number of divisions. We obtain explicit results when the trait is the age or the size, for age and size-controlled models.
Collapse
Affiliation(s)
- Arthur Genthon
- Gulliver, CNRS, ESPCI Paris, PSL University, 75005, Paris, France.
| | - David Lacoste
- Gulliver, CNRS, ESPCI Paris, PSL University, 75005, Paris, France
| |
Collapse
|
31
|
Mansour MM, Garcia AL. Validity of path thermodynamics in reactive systems. Phys Rev E 2020; 101:052135. [PMID: 32575179 DOI: 10.1103/physreve.101.052135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/07/2020] [Indexed: 11/07/2022]
Abstract
Path thermodynamic formulation of nonequilibrium reactive systems is considered. It is shown through simple practical examples that this approach can lead to results that contradict well established thermodynamic properties of such systems. Rigorous mathematical analysis confirming this fact is presented.
Collapse
Affiliation(s)
- M Malek Mansour
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles CP 231, Campus Plaine, B-1050 Brussels, Belgium
| | - Alejandro L Garcia
- Department of Physics and Astronomy, San Jose State University, San Jose, California 95192, USA
| |
Collapse
|
32
|
Kuhn M, Firth-Clark S, Tosco P, Mey ASJS, Mackey M, Michel J. Assessment of Binding Affinity via Alchemical Free-Energy Calculations. J Chem Inf Model 2020; 60:3120-3130. [DOI: 10.1021/acs.jcim.0c00165] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Maximilian Kuhn
- Cresset, New Cambridge House, Bassingbourn Road, Litlington SG8 0SS, Cambridgeshire, U.K
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Stuart Firth-Clark
- Cresset, New Cambridge House, Bassingbourn Road, Litlington SG8 0SS, Cambridgeshire, U.K
| | - Paolo Tosco
- Cresset, New Cambridge House, Bassingbourn Road, Litlington SG8 0SS, Cambridgeshire, U.K
| | - Antonia S. J. S. Mey
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Mark Mackey
- Cresset, New Cambridge House, Bassingbourn Road, Litlington SG8 0SS, Cambridgeshire, U.K
| | - Julien Michel
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
33
|
Oh S, Baggag A, Nha H. Entropy, Free Energy, and Work of Restricted Boltzmann Machines. ENTROPY 2020; 22:e22050538. [PMID: 33286309 PMCID: PMC7517032 DOI: 10.3390/e22050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 11/16/2022]
Abstract
A restricted Boltzmann machine is a generative probabilistic graphic network. A probability of finding the network in a certain configuration is given by the Boltzmann distribution. Given training data, its learning is done by optimizing the parameters of the energy function of the network. In this paper, we analyze the training process of the restricted Boltzmann machine in the context of statistical physics. As an illustration, for small size bar-and-stripe patterns, we calculate thermodynamic quantities such as entropy, free energy, and internal energy as a function of the training epoch. We demonstrate the growth of the correlation between the visible and hidden layers via the subadditivity of entropies as the training proceeds. Using the Monte-Carlo simulation of trajectories of the visible and hidden vectors in the configuration space, we also calculate the distribution of the work done on the restricted Boltzmann machine by switching the parameters of the energy function. We discuss the Jarzynski equality which connects the path average of the exponential function of the work and the difference in free energies before and after training.
Collapse
Affiliation(s)
- Sangchul Oh
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, 5825 Doha, Qatar
- Correspondence:
| | - Abdelkader Baggag
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Qatar Foundation, 5825 Doha, Qatar;
| | - Hyunchul Nha
- Department of Physics, Texas A&M University at Qatar, Education City, 23874 Doha, Qatar;
| |
Collapse
|
34
|
Gupta D, Plata CA, Pal A. Work Fluctuations and Jarzynski Equality in Stochastic Resetting. PHYSICAL REVIEW LETTERS 2020; 124:110608. [PMID: 32242734 DOI: 10.1103/physrevlett.124.110608] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/03/2020] [Indexed: 05/27/2023]
Abstract
We consider the paradigm of an overdamped Brownian particle in a potential well, which is modulated through an external protocol, in the presence of stochastic resetting. Thus, in addition to the short range diffusive motion, the particle also experiences intermittent long jumps that reset the particle back at a preferred location. Due to the modulation of the trap, work is done on the system and we investigate the statistical properties of the work fluctuations. We find that the distribution function of the work typically, in asymptotic times, converges to a universal Gaussian form for any protocol as long as that is also renewed after each resetting event. When observed for a finite time, we show that the system does not generically obey the Jarzynski equality that connects the finite time work fluctuations to the difference in free energy. Nonetheless, we identify herein a restricted set of protocols which embraces the relation. In stark contrast, the Jarzynski equality is always fulfilled when the protocols continue to evolve without being reset. We present a set of exactly solvable models, demonstrate the validation of our theory and carry out numerical simulations to illustrate these findings. Finally, we have pointed out possible realistic implementations for resetting in experiments using the so-called engineered swift equilibration.
Collapse
Affiliation(s)
- Deepak Gupta
- Dipartimento di Fisica "G. Galilei," INFN, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Carlos A Plata
- Dipartimento di Fisica "G. Galilei," INFN, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Arnab Pal
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for the Physics and Chemistry of Living Systems. Tel Aviv University, 6997801, Tel Aviv, Israel
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
35
|
Limongelli V. Ligand binding free energy and kinetics calculation in 2020. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1455] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vittorio Limongelli
- Faculty of Biomedical Sciences, Institute of Computational Science – Center for Computational Medicine in Cardiology Università della Svizzera italiana (USI) Lugano Switzerland
- Department of Pharmacy University of Naples “Federico II” Naples Italy
| |
Collapse
|
36
|
Mey ASJS, Allen BK, Macdonald HEB, Chodera JD, Hahn DF, Kuhn M, Michel J, Mobley DL, Naden LN, Prasad S, Rizzi A, Scheen J, Shirts MR, Tresadern G, Xu H. Best Practices for Alchemical Free Energy Calculations [Article v1.0]. LIVING JOURNAL OF COMPUTATIONAL MOLECULAR SCIENCE 2020; 2:18378. [PMID: 34458687 PMCID: PMC8388617 DOI: 10.33011/livecoms.2.1.18378] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Alchemical free energy calculations are a useful tool for predicting free energy differences associated with the transfer of molecules from one environment to another. The hallmark of these methods is the use of "bridging" potential energy functions representing alchemical intermediate states that cannot exist as real chemical species. The data collected from these bridging alchemical thermodynamic states allows the efficient computation of transfer free energies (or differences in transfer free energies) with orders of magnitude less simulation time than simulating the transfer process directly. While these methods are highly flexible, care must be taken in avoiding common pitfalls to ensure that computed free energy differences can be robust and reproducible for the chosen force field, and that appropriate corrections are included to permit direct comparison with experimental data. In this paper, we review current best practices for several popular application domains of alchemical free energy calculations performed with equilibrium simulations, in particular relative and absolute small molecule binding free energy calculations to biomolecular targets.
Collapse
Affiliation(s)
- Antonia S. J. S. Mey
- EaStCHEM School of Chemistry, David Brewster Road, Joseph Black Building, The King’s Buildings, Edinburgh, EH9 3FJ, UK
| | | | - Hannah E. Bruce Macdonald
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY, USA
| | - John D. Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY, USA
| | - David F. Hahn
- Computational Chemistry, Janssen Research & Development, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Maximilian Kuhn
- EaStCHEM School of Chemistry, David Brewster Road, Joseph Black Building, The King’s Buildings, Edinburgh, EH9 3FJ, UK
- Cresset, Cambridgeshire, UK
| | - Julien Michel
- EaStCHEM School of Chemistry, David Brewster Road, Joseph Black Building, The King’s Buildings, Edinburgh, EH9 3FJ, UK
| | - David L. Mobley
- Departments of Pharmaceutical Sciences and Chemistry, University of California, Irvine, Irvine, USA
| | - Levi N. Naden
- Molecular Sciences Software Institute, Blacksburg VA, USA
| | | | - Andrea Rizzi
- Silicon Therapeutics, Boston, MA, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - Jenke Scheen
- EaStCHEM School of Chemistry, David Brewster Road, Joseph Black Building, The King’s Buildings, Edinburgh, EH9 3FJ, UK
| | | | - Gary Tresadern
- Computational Chemistry, Janssen Research & Development, Turnhoutseweg 30, Beerse B-2340, Belgium
| | | |
Collapse
|
37
|
Nguyen TH, Ngo V, Castro Zerba JP, Noskov S, Minh DDL. Nonequilibrium path-ensemble averages for symmetric protocols. J Chem Phys 2019; 151:194103. [DOI: 10.1063/1.5121306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Van Ngo
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - João Paulo Castro Zerba
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, USA
- Institute of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Sergei Noskov
- SYN: Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - David D. L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
38
|
Boubeta FM, Contestín García RM, Lorenzo EN, Boechi L, Estrin D, Sued M, Arrar M. Lessons learned about steered molecular dynamics simulations and free energy calculations. Chem Biol Drug Des 2019; 93:1129-1138. [PMID: 30793836 DOI: 10.1111/cbdd.13485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 01/30/2023]
Abstract
The calculation of free energy profiles is central in understanding differential enzymatic activity, for instance, involving chemical reactions that require QM-MM tools, ligand migration, and conformational rearrangements that can be modeled using classical potentials. The use of steered molecular dynamics (sMD) together with the Jarzynski equality is a popular approach in calculating free energy profiles. Here, we first briefly review the application of the Jarzynski equality to sMD simulations, then revisit the so-called stiff-spring approximation and the consequent expectation of Gaussian work distributions and, finally, reiterate the practical utility of the second-order cumulant expansion, as it coincides with the parametric maximum-likelihood estimator in this scenario. We illustrate this procedure using simulations of CO, both in aqueous solution and in a carbon nanotube as a model system for biologically relevant nanoheterogeneous environments. We conclude the use of the second-order cumulant expansion permits the use of faster pulling velocities in sMD simulations, without introducing bias due to large dispersion in the non-equilibrium work distribution.
Collapse
Affiliation(s)
- Fernando Martín Boubeta
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rocío María Contestín García
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Norberto Lorenzo
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leonardo Boechi
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dario Estrin
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela Sued
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mehrnoosh Arrar
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
39
|
Lemos CGO, Santos M, Ferreira AL, Figueiredo W. Fluctuation theorem with two independent field parameters: The one-dimensional compressible Ising model. Phys Rev E 2019; 99:012129. [PMID: 30780247 DOI: 10.1103/physreve.99.012129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Indexed: 11/07/2022]
Abstract
In this work we consider the nonequilibrium mechanical and magnetic work performed on a one-dimensional compressible Ising model. In the harmonic approximation we easily integrate the mechanical degrees of freedom of the model, and the resulting effective Hamiltonian depends on two external parameters, the magnetic field and the force applied along the chain. As the model is exactly soluble in one dimension we can determine the free energy difference between two arbitrary thermodynamic states of the system. We show the validity of the Jarzynski equality, which relates the free energy difference between two thermodynamic states of the system and the average work performed by external agents in a finite time, through nonequilibrium paths between the same thermodynamic states. We have found that the Jarzynski theorem remains valid for all the values of the rate of variation of the magnetic field and the mechanical force applied to the system.
Collapse
Affiliation(s)
- C G O Lemos
- Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, Santa Catarina, Brazil
| | | | - A L Ferreira
- Departamento de Física, I3N, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - W Figueiredo
- Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, Santa Catarina, Brazil and Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, 05508-090 São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Auconi A, Giansanti A, Klipp E. Information Thermodynamics for Time Series of Signal-Response Models. ENTROPY 2019; 21:e21020177. [PMID: 33266893 PMCID: PMC7514659 DOI: 10.3390/e21020177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/27/2019] [Accepted: 02/11/2019] [Indexed: 11/29/2022]
Abstract
The entropy production in stochastic dynamical systems is linked to the structure of their causal representation in terms of Bayesian networks. Such a connection was formalized for bipartite (or multipartite) systems with an integral fluctuation theorem in [Phys. Rev. Lett. 111, 180603 (2013)]. Here we introduce the information thermodynamics for time series, that are non-bipartite in general, and we show that the link between irreversibility and information can only result from an incomplete causal representation. In particular, we consider a backward transfer entropy lower bound to the conditional time series irreversibility that is induced by the absence of feedback in signal-response models. We study such a relation in a linear signal-response model providing analytical solutions, and in a nonlinear biological model of receptor-ligand systems where the time series irreversibility measures the signaling efficiency.
Collapse
Affiliation(s)
- Andrea Auconi
- Theoretische Biophysik, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Andrea Giansanti
- Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy
- INFN, Sezione di Roma 1, 00185 Rome, Italy
| | - Edda Klipp
- Theoretische Biophysik, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, Germany
- Correspondence:
| |
Collapse
|
41
|
Arrar M, Boubeta FM, Szretter ME, Sued M, Boechi L, Rodriguez D. On the accurate estimation of free energies using the jarzynski equality. J Comput Chem 2018; 40:688-696. [DOI: 10.1002/jcc.25754] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/18/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Mehrnoosh Arrar
- Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Fernando Martín Boubeta
- Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Maria Eugenia Szretter
- Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, Instituto de Cálculo, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Mariela Sued
- Instituto de Cálculo, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Leonardo Boechi
- Instituto de Cálculo, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| | - Daniela Rodriguez
- Instituto de Cálculo, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
42
|
Exploring the Sulfatase 1 Catch Bond Free Energy Landscape using Jarzynski's Equality. Sci Rep 2018; 8:16849. [PMID: 30442949 PMCID: PMC6237999 DOI: 10.1038/s41598-018-35120-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/25/2018] [Indexed: 01/29/2023] Open
Abstract
In non-covalent biological adhesion, molecular bonds commonly exhibit a monotonously decreasing life time when subjected to tensile forces (slip bonds). In contrast, catch bonds behave counter intuitively, as they show an increased life time within a certain force interval. To date only a hand full of catch bond displaying systems have been identified. In order to unveil their nature, a number of structural and phenomenological models have been introduced. Regardless of the individual causes for catch bond behavior, it appears evident that the free energy landscapes of these interactions bear more than one binding state. Here, we investigated the catch bond interaction between the hydrophilic domain of the human cell surface sulfatase 1 (Sulf1HD) and its physiological substrate heparan sulfate (HS) by atomic force microscopy based single molecule force spectroscopy (AFM-SMFS). Using Jarzynski’s equality, we estimated the associated Gibbs free energy and provide a comprehensive thermodynamic and kinetic characterization of Sulf1HD/HS interaction. Interestingly, the binding potential landscape exhibits two distinct potential wells which confirms the recently suggested two state binding. Even though structural data of Sulf1HD is lacking, our results allow to draft a detailed picture of the directed and processive desulfation of HS.
Collapse
|
43
|
Dinner AR, Mattingly JC, Tempkin JOB, Van Koten B, Weare J. Trajectory stratification of stochastic dynamics. SIAM REVIEW. SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS 2018; 60:909-938. [PMID: 34650314 PMCID: PMC8514164 DOI: 10.1137/16m1104329] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present a general mathematical framework for trajectory stratification for simulating rare events. Trajectory stratification involves decomposing trajectories of the underlying process into fragments limited to restricted regions of state space (strata), computing averages over the distributions of the trajectory fragments within the strata with minimal communication between them, and combining those averages with appropriate weights to yield averages with respect to the original underlying process. Our framework reveals the full generality and flexibility of trajectory stratification, and it illuminates a common mathematical structure shared by existing algorithms for sampling rare events. We demonstrate the power of the framework by defining strata in terms of both points in time and path-dependent variables for efficiently estimating averages that were not previously tractable.
Collapse
Affiliation(s)
- Aaron R. Dinner
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jonathan C. Mattingly
- Departments of Mathematics and Statistical Science, Duke University, Durham, North Carolina 27708, USA
| | - Jeremy O. B. Tempkin
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Brian Van Koten
- Department of Statistics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jonathan Weare
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Statistics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
44
|
Menzer WM, Li C, Sun W, Xie B, Minh DDL. Simple Entropy Terms for End-Point Binding Free Energy Calculations. J Chem Theory Comput 2018; 14:6035-6049. [PMID: 30296084 DOI: 10.1021/acs.jctc.8b00418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We introduce a number of computationally inexpensive modifications to the MM/PBSA and MM/GBSA estimators for binding free energies, which are based on average receptor-ligand interaction energies in simulations of a noncovalent complex, to improve the treatment of entropy: second- and higher-order terms in a cumulant expansion and a confining potential on ligand external degrees of freedom. We also consider a filter for snapshots where ligands have drifted from the initial binding pose. The variations were tested on six sets of systems for which binding modes and free energies have previously been experimentally determined. For some data sets, none of the tested estimators led to results significantly correlated with measured free energies. In data sets with nontrivial correlation, a ligand RMSD cutoff of 3 Å and a second-order truncation of the cumulant expansion was found to be comparable or better than the average interaction energy by several statistical metrics.
Collapse
|
45
|
Zhu L, Wang J. Calculating the free energy difference by applying the Jarzynski equality to a virtual integrable system. Phys Rev E 2018; 98:022117. [PMID: 30253520 DOI: 10.1103/physreve.98.022117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 11/07/2022]
Abstract
The Jarzynski equality (JE) provides a nonequilibrium method to measure and calculate the free energy difference (FED). Note that if two systems share the same Hamiltonian at two equilibrium states, respectively, they share the same FED between these two equilibrium states as well. Therefore the calculation of the FED of a system may be facilitated by considering instead another virtual system designed to this end. Taking advantage of this flexibility and the JE, we show that by introducing an integrable virtual system, the evolution problem involved in the JE can be solved. As a consequence, FED is expressed in the form of an equilibrium equality, in contrast with the nonequilibrium JE it is based on. Numerically, this result allows FED to be computed by sampling the canonical ensemble directly and the computational cost can be significantly reduced. The effectiveness and efficiency of this scheme are illustrated with numerical studies of several representative model systems.
Collapse
Affiliation(s)
- Liyun Zhu
- Department of Physics, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), and Jiujiang Research Institute, Xiamen University, Xiamen 361005, Fujian, China
| | - Jiao Wang
- Department of Physics, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), and Jiujiang Research Institute, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
46
|
Yunger Halpern N, Garner AJP, Dahlsten OCO, Vedral V. Maximum one-shot dissipated work from Rényi divergences. Phys Rev E 2018; 97:052135. [PMID: 29906852 DOI: 10.1103/physreve.97.052135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 06/08/2023]
Abstract
Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in finite time instead of quasistatically. The average dissipated work has been shown to be proportional to a relative entropy between phase-space densities, to a relative entropy between quantum states, and to a relative entropy between probability distributions over possible values of work. We derive one-shot analogs of all three equations, demonstrating that the order-infinity Rényi divergence is proportional to the maximum possible dissipated work in each case. These one-shot analogs of fluctuation-theorem results contribute to the unification of these two toolkits for small-scale, nonequilibrium statistical physics.
Collapse
Affiliation(s)
- Nicole Yunger Halpern
- Institute for Quantum Information and Matter, Caltech, Pasadena, California 91125, USA
| | - Andrew J P Garner
- Atomic and Laser Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Center for Quantum Technologies, National University of Singapore 117543, Republic of Singapore
| | - Oscar C O Dahlsten
- Atomic and Laser Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- London Institute for Mathematical Sciences, 35a South Street, Mayfair, London W1K 2XF, United Kingdom
| | - Vlatko Vedral
- Atomic and Laser Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Center for Quantum Technologies, National University of Singapore 117543, Republic of Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
| |
Collapse
|
47
|
Lemos CGO, Santos M, Ferreira AL, Figueiredo W. Testing ground for fluctuation theorems: The one-dimensional Ising model. Phys Rev E 2018; 97:042121. [PMID: 29758686 DOI: 10.1103/physreve.97.042121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 06/08/2023]
Abstract
In this paper we determine the nonequilibrium magnetic work performed on a Ising model and relate it to the fluctuation theorem derived some years ago by Jarzynski. The basic idea behind this theorem is the relationship connecting the free energy difference between two thermodynamic states of a system and the average work performed by an external agent, in a finite time, through nonequilibrium paths between the same thermodynamic states. We test the validity of this theorem by considering the one-dimensional Ising model where the free energy is exactly determined as a function of temperature and magnetic field. We have found that the Jarzynski theorem remains valid for all the values of the rate of variation of the magnetic field applied to the system. We have also determined the probability distribution function for the work performed on the system for the forward and reverse processes and verified that predictions based on the Crooks relation are equally correct. We also propose a method to calculate the lag between the current state of the system and that of the equilibrium based on macroscopic variables. We have shown that the lag increases with the sweeping rate of the field at its final value for the reverse process, while it decreases in the case of the forward process. The lag increases linearly with the size of the chain and with a slope decreasing with the inverse of the rate of variation of the field.
Collapse
Affiliation(s)
- C G O Lemos
- Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - M Santos
- Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - A L Ferreira
- Departamento de Física, I3N, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - W Figueiredo
- Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, Santa Catarina, Brazil and Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, 05508-090 São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Moreno Ostertag L, Utzig T, Klinger C, Valtiner M. Tether-Length Dependence of Bias in Equilibrium Free-Energy Estimates for Surface-to-Molecule Unbinding Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:766-772. [PMID: 29087720 PMCID: PMC6398919 DOI: 10.1021/acs.langmuir.7b02844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/30/2017] [Indexed: 06/07/2023]
Abstract
The capabilities of atomic force microscopes and optical tweezers to probe unfolding or surface-to-molecule bond rupture at a single-molecular level are widely appreciated. These measurements are typically carried out unidirectionally under nonequilibrium conditions. Jarzynski's equality has proven useful to relate the work obtained along these nonequilibrium trajectories to the underlying free energy of the unfolding or unbinding process. Here, we quantify biases that arise from the molecular design of the bond rupture experiment for probing surface-to-molecule bonds. In particular, we probe the well-studied amine/gold bond as a function of the linker's length which is used to anchor the specific amine functionality during a single molecule unbinding experiment. With increasing linker length, we observe a significant increase in the average work spent on polymer stretching and a strongly biased estimated interaction free energy. Our data demonstrate that free energy estimates converge well for linker lengths below 20 nm, where the bias is <10-15%. With longer linkers severe methodical limits of the method are reached, and convergence within a reasonable number of realizations of the bond rupture is not feasible. Our results also provide new insights into stability and work dissipation mechanisms at adhesive interfaces at the single-molecular level, and offer important design and analysis aspects for single-molecular surface-to-molecule experiments.
Collapse
Affiliation(s)
- Laila Moreno Ostertag
- Interaction
Forces and Functional Materials, Department of Interface Chemistry
and Surface Engineering, Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Thomas Utzig
- Interaction
Forces and Functional Materials, Department of Interface Chemistry
and Surface Engineering, Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Christine Klinger
- Institut
für Physikalische Chemie II, TU Bergakademie
Freiberg, 09599 Freiberg, Germany
| | - Markus Valtiner
- Interaction
Forces and Functional Materials, Department of Interface Chemistry
and Surface Engineering, Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
- Institute
for Applied Physics, Applied Interface Physics, Technical University of Vienna, 1040 Vienna, Austria
| |
Collapse
|
49
|
Jaramillo JD, Deng J, Gong J. Quantum work fluctuations in connection with the Jarzynski equality. Phys Rev E 2018; 96:042119. [PMID: 29347528 DOI: 10.1103/physreve.96.042119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 11/07/2022]
Abstract
A result of great theoretical and experimental interest, the Jarzynski equality predicts a free energy change ΔF of a system at inverse temperature β from an ensemble average of nonequilibrium exponential work, i.e., 〈e^{-βW}〉=e^{-βΔF}. The number of experimental work values needed to reach a given accuracy of ΔF is determined by the variance of e^{-βW}, denoted var(e^{-βW}). We discover in this work that var(e^{-βW}) in both harmonic and anharmonic Hamiltonian systems can systematically diverge in nonadiabatic work protocols, even when the adiabatic protocols do not suffer from such divergence. This divergence may be regarded as a type of dynamically induced phase transition in work fluctuations. For a quantum harmonic oscillator with time-dependent trapping frequency as a working example, any nonadiabatic work protocol is found to yield a diverging var(e^{-βW}) at sufficiently low temperatures, markedly different from the classical behavior. The divergence of var(e^{-βW}) indicates the too-far-from-equilibrium nature of a nonadiabatic work protocol and makes it compulsory to apply designed control fields to suppress the quantum work fluctuations in order to test the Jarzynski equality.
Collapse
Affiliation(s)
- Juan D Jaramillo
- Department of Physics, National University of Singapore, Singapore 117546
| | - Jiawen Deng
- NUS Graduate School for Integrative Science and Engineering, Singapore 117597
| | - Jiangbin Gong
- Department of Physics, National University of Singapore, Singapore 117546.,NUS Graduate School for Integrative Science and Engineering, Singapore 117597
| |
Collapse
|
50
|
Marsland R, England J. Limits of predictions in thermodynamic systems: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:016601. [PMID: 28976362 DOI: 10.1088/1361-6633/aa9101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The past twenty years have seen a resurgence of interest in nonequilibrium thermodynamics, thanks to advances in the theory of stochastic processes and in their thermodynamic interpretation. Fluctuation theorems provide fundamental constraints on the dynamics of systems arbitrarily far from thermal equilibrium. Thermodynamic uncertainty relations bound the dissipative cost of precision in a wide variety of processes. Concepts of excess work and excess heat provide the basis for a complete thermodynamics of nonequilibrium steady states, including generalized Clausius relations and thermodynamic potentials. But these general results carry their own limitations: fluctuation theorems involve exponential averages that can depend sensitively on unobservably rare trajectories; steady-state thermodynamics makes use of a dual dynamics that lacks any direct physical interpretation. This review aims to present these central results of contemporary nonequilibrium thermodynamics in such a way that the power of each claim for making physical predictions can be clearly assessed, using examples from current topics in soft matter and biophysics.
Collapse
|