1
|
Ultrastable glasses portray similar behaviour to ordinary glasses at high pressure. Sci Rep 2016; 6:34296. [PMID: 27694814 PMCID: PMC5046104 DOI: 10.1038/srep34296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/22/2016] [Indexed: 01/19/2023] Open
Abstract
Pressure experiments provide a unique opportunity to unravel new insights into glass-forming liquids by exploring its effect on the dynamics of viscous liquids and on the evolution of the glass transition temperature. Here we compare the pressure dependence of the onset of devitrification, Ton, between two molecular glasses prepared from the same material but with extremely different ambient-pressure kinetic and thermodynamic stabilities. Our data clearly reveal that, while both glasses exhibit different dTon/dP values at low pressures, they evolve towards closer calorimetric devitrification temperature and pressure dependence as pressure increases. We tentatively interpret these results from the different densities of the starting materials at room temperature and pressure. Our data shows that at the probed pressures, the relaxation time of the glass into the supercooled liquid is determined by temperature and pressure similarly to the behaviour of liquids, but using stability-dependent parameters.
Collapse
|
2
|
Karmakar S, Dasgupta C, Sastry S. Length scales in glass-forming liquids and related systems: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:016601. [PMID: 26684508 DOI: 10.1088/0034-4885/79/1/016601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed.
Collapse
Affiliation(s)
- Smarajit Karmakar
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India
| | | | | |
Collapse
|
3
|
Ottinger HC. Irreversible dynamics, Onsager-Casimir symmetry, and an application to turbulence. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042121. [PMID: 25375452 DOI: 10.1103/physreve.90.042121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Indexed: 06/04/2023]
Abstract
Irreversible contributions to the dynamics of nonequilibrium systems can be formulated in terms of dissipative, or irreversible, brackets. We discuss the structure of such irreversible brackets in view of a degeneracy implied by energy conservation, where we consider different types of symmetries of the bracket corresponding to the Onsager and Casimir symmetries of linear irreversible thermodynamics. Slip and turbulence provide important examples of antisymmetric irreversible brackets and offer guidance for the more general modeling of irreversible dynamics without entropy production. Conversely, turbulence modeling could benefit from elucidating thermodynamic structure. The examples suggest constructing antisymmetric irreversible brackets in terms of completely antisymmetric functions of three indices. Irreversible brackets without well-defined symmetry properties can arise for rare events, causing big configurational changes.
Collapse
Affiliation(s)
- Hans Christian Ottinger
- ETH Zürich, Department of Materials, Polymer Physics, HCI H 543, CH-8093 Zürich, Switzerland
| |
Collapse
|
4
|
Tanaka H. Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization: Bond orientational order in liquids. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:113. [PMID: 23104614 DOI: 10.1140/epje/i2012-12113-y] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 09/28/2012] [Indexed: 06/01/2023]
Abstract
There are at least three fundamental states of matter, depending upon temperature and pressure: gas, liquid, and solid (crystal). These states are separated by first-order phase transitions between them. In both gas and liquid phases a complete translational and rotational symmetry exist, whereas in a solid phase both symmetries are broken. In intermediate phases between liquid and solid, which include liquid crystal and plastic crystal phases, only one of the two symmetries is preserved. Among the fundamental states of matter, the liquid state is the most poorly understood. We argue that it is crucial for a better understanding of liquids to recognize that a liquid generally has the tendency to have a local structural order and its presence is intrinsic and universal to any liquid. Such structural ordering is a consequence of many-body correlations, more specifically, bond angle correlations, which we believe are crucial for the description of the liquid state. We show that this physical picture may naturally explain difficult unsolved problems associated with the liquid state, such as anomalies of water-type liquids (water, Si, Ge, ...), liquid-liquid transition, liquid-glass transition, crystallization and quasicrystal formation, in a unified manner. In other words, we need a new order parameter representing a low local free-energy configuration, which is a bond orientational order parameter in many cases, in addition to a density order parameter for the physical description of these phenomena. Here we review our two-order-parameter model of liquid and consider how transient local structural ordering is linked to all of the above-mentioned phenomena. The relationship between these phenomena is also discussed.
Collapse
Affiliation(s)
- Hajime Tanaka
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505, Tokyo, Japan.
| |
Collapse
|
5
|
Mosayebi M, Del Gado E, Ilg P, Öttinger HC. Deformation of inherent structures to detect long-range correlations in supercooled liquids. J Chem Phys 2012; 137:024504. [DOI: 10.1063/1.4732859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Gujrati PD. Nonequilibrium thermodynamics. II. Application to inhomogeneous systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041128. [PMID: 22680440 DOI: 10.1103/physreve.85.041128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 06/20/2011] [Indexed: 06/01/2023]
Abstract
We provide an extension of a recent approach to study nonequilibrium thermodynamics [Gujrati, Phys. Rev. E 81, 051130 (2010), to be denoted by I in this work] to inhomogeneous systems by considering the latter to be composed of quasi-independent subsystems. The system Σ along with the (macroscopically extremely large) medium Σ[over ̃] form an isolated system Σ0. The fields (temperature, pressure, etc.) of Σ and Σ[over ̃] differ unless at equilibrium. We show that the additivity of entropy requires quasi-independence of the subsystems, which results from the interaction energies between different subsystems being negligible so the energy also becomes additive. The thermodynamic potentials such as the Gibbs free energy that continuously decrease during approach to equilibrium are determined by the fields of the medium and exist no matter how far the subsystems are out of equilibrium, so their fields may not even exist. This and the requirement of quasi-independence make our approach differ from the conventional approach used by de Groot and others, as discussed in the text. We find it useful to introduce the time-dependent Gibbs statistical entropy for Σ0, from which we derive the Gibbs entropy of Σ; in equilibrium this entropy reduces to the equilibrium thermodynamic entropy. As the energy depends on the frame of reference, the thermodynamic potentials and the Gibbs fundamental relation, but not the entropy, depend on the frame of reference. The possibility of relative motion between subsystems described by their net linear and angular momenta gives rise to viscous dissipation. The concept of internal equilibrium introduced in I is developed further here and its important consequences are discussed for inhomogeneous systems. The concept of internal variables (various examples are given in the text) as variables that cannot be controlled by the observer for nonequilibrium evolution is also discussed. They are important because the concept of internal equilibrium in the presence of internal variables no longer holds if internal variables are not used. The Gibbs fundamental relation, thermodynamic potentials, and irreversible entropy generation are expressed in terms of observables and internal variables. We use these relations to eventually formulate the nonequilibrium thermodynamics of inhomogeneous systems. We also briefly discuss the case when bodies form an isolated system without any medium to obtain their irreversible contributions and show that this case does not differ from when bodies are in an extremely large medium.
Collapse
Affiliation(s)
- P D Gujrati
- Department of Physics, Department of Polymer Science, The University of Akron, Akron, Ohio 44325, USA.
| |
Collapse
|
7
|
Boucher VM, Cangialosi D, Alegría A, Colmenero J. Enthalpy Recovery of Glassy Polymers: Dramatic Deviations from the Extrapolated Liquidlike Behavior. Macromolecules 2011. [DOI: 10.1021/ma2018233] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Virginie M. Boucher
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Daniele Cangialosi
- Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Angel Alegría
- Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
| | - Juan Colmenero
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
- Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
| |
Collapse
|
8
|
Mauro JC, Loucks RJ, Sen S. Heat capacity, enthalpy fluctuations, and configurational entropy in broken ergodic systems. J Chem Phys 2010; 133:164503. [DOI: 10.1063/1.3499326] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
9
|
Mosayebi M, Del Gado E, Ilg P, Ottinger HC. Probing a critical length scale at the glass transition. PHYSICAL REVIEW LETTERS 2010; 104:205704. [PMID: 20867040 DOI: 10.1103/physrevlett.104.205704] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Indexed: 05/29/2023]
Abstract
We give evidence of a clear structural signature of the glass transition, in terms of a static correlation length with the same dependence on the system size, which is typical of critical phenomena. Our approach is to introduce an external, static perturbation to extract the structural information from the system's response. In particular, we consider the transformation behavior of the local minima of the underlying potential energy landscape (inherent structures), under a static deformation. The finite-size scaling analysis of our numerical results indicate that the correlation length diverges at a temperature Tc, below the temperatures where the system can be equilibrated. Our numerical results are consistent with random first order theory, which predicts such a divergence with a critical exponent ν=2/3 at the Kauzmann temperature, where the extrapolated configurational entropy vanishes.
Collapse
Affiliation(s)
- Majid Mosayebi
- Polymer Physics, ETH Zürich, Department of Materials, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
10
|
Del Gado E, Ilg P, Kröger M, Ottinger HC. Nonaffine deformation of inherent structure as a static signature of cooperativity in supercooled liquids. PHYSICAL REVIEW LETTERS 2008; 101:095501. [PMID: 18851620 DOI: 10.1103/physrevlett.101.095501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 03/10/2008] [Indexed: 05/26/2023]
Abstract
We unveil the existence of nonaffinely rearranging regions in the inherent structures (IS) of supercooled liquids by numerical simulations of model glass formers subject to static shear deformations combined with local energy minimizations. In the liquid state IS, we find a broad distribution of large rearrangements which are correlated only over small distances. At low temperatures, the onset of the cooperative dynamics corresponds to much smaller displacements correlated over larger distances. This finding indicates the presence of nonaffinely rearranging domains of relevant size in the IS deformation, which can be seen as the static counterpart of the cooperatively rearranging regions in the dynamics. This idea provides new insight into possible structural signatures of slow cooperative dynamics of supercooled liquids and supports the connections with elastic heterogeneities found in amorphous solids.
Collapse
|