1
|
Inter-enantiomer conversion dynamics and Johari-Goldstein relaxation of benzophenones. Sci Rep 2021; 11:20248. [PMID: 34642356 PMCID: PMC8511015 DOI: 10.1038/s41598-021-99606-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022] Open
Abstract
We employ temperature- and pressure-dependent dielectric spectroscopy, as well as differential scanning calorimetry, to characterize benzophenone and the singly-substituted ortho-bromobenzophenone derivative in the liquid and glass states, and analyze the results in terms of the molecular conformations reported for these molecules. Despite the significantly higher mass of the brominated derivative, its dynamic and calorimetric glass transition temperatures are only ten degrees higher than those of benzophenone. The kinetic fragility index of the halogenated molecule is lower than that of the parent compound, and is found to decrease with increasing pressure. By a detailed analysis of the dielectric loss spectra, we provide evidence for the existence of a Johari-Goldstein (JG) relaxation in both compounds, thus settling the controversy concerning the possible lack of a JG process in benzophenone and confirming the universality of this dielectric loss feature in molecular glass-formers. Both compounds also display an intramolecular relaxation, whose characteristic timescale appears to be correlated with that of the cooperative structural relaxation associated with the glass transition. The limited molecular flexibility of ortho-bromobenzophenone allows identifying the intramolecular relaxation as the inter-enantiomeric conversion between two isoenergetic conformers of opposite chirality, which only differ in the sign of the angle between the brominated aryl ring and the coplanar phenyl-ketone subunit. The observation by dielectric spectroscopy of a similar relaxation also in liquid benzophenone indicates that the inter-enantiomer conversion between the two isoenergetic helicoidal ground-state conformers of opposite chirality occurs via a transition state characterized by a coplanar phenyl-ketone moiety.
Collapse
|
2
|
Jung G, Caraglio M, Schrack L, Franosch T. Dynamical properties of densely packed confined hard-sphere fluids. Phys Rev E 2020; 102:012612. [PMID: 32795038 DOI: 10.1103/physreve.102.012612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/28/2020] [Indexed: 11/07/2022]
Abstract
Numerical solutions of the mode-coupling theory (MCT) equations for a hard-sphere fluid confined between two parallel hard walls are elaborated. The governing equations feature multiple parallel relaxation channels which significantly complicate their numerical integration. We investigate the intermediate scattering functions and the susceptibility spectra close to structural arrest and compare to an asymptotic analysis of the MCT equations. We corroborate that the data converge in the β-scaling regime to two asymptotic power laws, viz. the critical decay and the von Schweidler law. The numerical results reveal a nonmonotonic dependence of the power-law exponents on the slab width and a nontrivial kink in the low-frequency susceptibility spectra. We also find qualitative agreement of these theoretical results to event-driven molecular dynamics simulations of polydisperse hard-sphere systems. In particular, the nontrivial dependence of the dynamical properties on the slab width is well reproduced.
Collapse
Affiliation(s)
- Gerhard Jung
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Lukas Schrack
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
3
|
Ruta B, Pineda E, Evenson Z. Relaxation processes and physical aging in metallic glasses. JOURNAL OF PHYSICS: CONDENSED MATTER 2017; 29:503002. [PMID: 0 DOI: 10.1088/1361-648x/aa9964] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
4
|
Cicerone MT, Tyagi M. Metabasin transitions are Johari-Goldstein relaxation events. J Chem Phys 2017; 146:054502. [DOI: 10.1063/1.4973935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
5
|
|
6
|
Ngai KL, Habasaki J. An alternative explanation of the change in T-dependence of the effective Debye-Waller factor at Tc or TB. J Chem Phys 2014; 141:114502. [DOI: 10.1063/1.4895554] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- K. L. Ngai
- Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
- CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| | - J. Habasaki
- Tokyo Institute of Technology, Yokohama 226-8502, Japan
| |
Collapse
|
7
|
Petzold N, Schmidtke B, Kahlau R, Bock D, Meier R, Micko B, Kruk D, Rössler EA. Evolution of the dynamic susceptibility in molecular glass formers: Results from light scattering, dielectric spectroscopy, and NMR. J Chem Phys 2013; 138:12A510. [DOI: 10.1063/1.4770055] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
8
|
Kämpf K, Klameth F, Vogel M. Power-law and logarithmic relaxations of hydrated proteins: A molecular dynamics simulations study. J Chem Phys 2012. [DOI: 10.1063/1.4768046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Capaccioli S, Ngai KL, Ancherbak S, Paciaroni A. Evidence of Coexistence of Change of Caged Dynamics at Tg and the Dynamic Transition at Td in Solvated Proteins. J Phys Chem B 2012; 116:1745-57. [DOI: 10.1021/jp2057892] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. Capaccioli
- CNR-IPCF, Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici,
c/o Dipartimento di Fisica, Largo Bruno Pontecorvo 3, I-56127 Pisa,
Italy
- Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3,
I-56127 Pisa, Italy
| | - K. L. Ngai
- CNR-IPCF, Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici,
c/o Dipartimento di Fisica, Largo Bruno Pontecorvo 3, I-56127 Pisa,
Italy
| | - S. Ancherbak
- Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3,
I-56127 Pisa, Italy
| | - A. Paciaroni
- Dipartimento di Fisica, Università di Perugia & IOM-CNR, Via A. Pascoli 1, 06123 Perugia, Italy
| |
Collapse
|
10
|
Soika E, Mankin R, Ainsaar A. Resonant behavior of a fractional oscillator with fluctuating frequency. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:011141. [PMID: 20365357 DOI: 10.1103/physreve.81.011141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/25/2009] [Indexed: 05/29/2023]
Abstract
The long-time behavior of the first moment for the output signal of a fractional oscillator with fluctuating frequency subjected to an external periodic force is considered. Colored fluctuations of the oscillator eigenfrequency are modeled as a dichotomous noise. The viscoelastic type friction kernel with memory is assumed as a power-law function of time. Using the Shapiro-Loginov formula, exact expressions for the response to an external periodic field and for the complex susceptibility are presented. On the basis of the exact formulas it is demonstrated that interplay of colored noise and memory can generate a variety of cooperation effects, such as multiresonances versus the driving frequency and the friction coefficient as well as stochastic resonance versus noise parameters. The necessary and sufficient conditions for the cooperation effects are also discussed. Particularly, two different critical memory exponents have been found, which mark dynamical transitions in the behavior of the system.
Collapse
Affiliation(s)
- Erkki Soika
- Institute of Mathematics and Natural Sciences, Tallinn University, 10120 Tallinn, Estonia.
| | | | | |
Collapse
|
11
|
Capaccioli S, Thayyil MS, Ngai KL. Critical Issues of Current Research on the Dynamics Leading to Glass Transition. J Phys Chem B 2008; 112:16035-49. [DOI: 10.1021/jp8057433] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- S. Capaccioli
- Dipartimento di Fisica, Università di Pisa and CNR-INFM, polylab, Largo Bruno Pontecorvo, 3, I-56127 Pisa, Italy
| | - M. Shahin Thayyil
- Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo, 3, I-56127 Pisa, Italy, and Department of Physics, University of Calicut, Kerala, India
| | - K. L. Ngai
- Naval Research Laboratory, Washington, DC 20375-5320
| |
Collapse
|
12
|
Gainaru C, Lips O, Troshagina A, Kahlau R, Brodin A, Fujara F, Rössler EA. On the nature of the high-frequency relaxation in a molecular glass former: a joint study of glycerol by field cycling NMR, dielectric spectroscopy, and light scattering. J Chem Phys 2008; 128:174505. [PMID: 18465928 DOI: 10.1063/1.2906122] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Fast field cycling (1)H NMR relaxometry is applied to determine the dispersion of spin-lattice relaxation time T(1)(omega) of the glass former glycerol in broad temperature (75-360 K) and frequency (10 kHz-30 MHz) ranges. The relaxation data are analyzed in terms of a susceptibility chi(")(omega) proportional, variantomegaT(1)(omega), related to the second rank (l=2) molecular orientational correlation function. Broadband dielectric spectroscopic results suggest the validity of frequency temperature superposition above the glass transition temperature T(g). This allows to combine NMR data of different temperatures into a single master curve chi(")(omegatau(alpha)) that extends over 15 decades in reduced frequency omegatau(alpha), where tau(alpha) is the structural alpha-relaxation time. This master curve is compared with the corresponding ones from dielectric spectroscopy (l=1) and depolarized light scattering (l=2). At omegatau(alpha)<1, NMR susceptibility is significantly different from both the dielectric and light scattering results. At omegatau(alpha)>1, there rather appears a difference between the susceptibilities of rank l=1 and l=2. Specifically, at omegatau(alpha)>>1, where the susceptibility is dominated by the so-called excess wing, the NMR and light scattering spectra (both l=2) rather coincide with each other and are about three times more intense than the dielectric (l=1) spectrum. This is explained by assuming that the high frequency dynamics correspond to only small-angle excursions. Below T(g), dielectric and NMR susceptibility compare well and exhibit an exponential temperature dependence.
Collapse
Affiliation(s)
- C Gainaru
- Experimentalphysik II, Universität Bayreuth, D-95 444 Bayreuth, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Turton DA, Wynne K. Structural relaxation in the hydrogen-bonding liquids N-methylacetamide and water studied by optical Kerr effect spectroscopy. J Chem Phys 2008; 128:154516. [DOI: 10.1063/1.2897432] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
14
|
Lunkenheimer P, Pardo LC, Köhler M, Loidl A. Broadband dielectric spectroscopy on benzophenone: alpha relaxation, beta relaxation, and mode coupling theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:031506. [PMID: 18517387 DOI: 10.1103/physreve.77.031506] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/06/2008] [Indexed: 05/26/2023]
Abstract
We have performed a detailed dielectric investigation of the relaxational dynamics of glass-forming benzophenone. Our measurements cover a broad frequency range of 0.1 Hz to 120 GHz and temperatures from far below the glass temperature well up into the region of the small-viscosity liquid. With respect to the alpha relaxation this material can be characterized as a typical molecular glass former with rather high fragility. A good agreement of the alpha relaxation behavior with the predictions of the mode coupling theory of the glass transition is stated. In addition, at temperatures below and in the vicinity of T(g) we detect a well-pronounced beta relaxation of Johari-Goldstein type, which with increasing temperature develops into an excess wing. We compare our results to literature data from optical Kerr effect and depolarized light scattering experiments, where an excess-wing-like feature was observed in the 1-100 GHz region. We address the question if the Cole-Cole peak, which was invoked to describe the optical Kerr effect data within the framework of the mode coupling theory, has any relation to the canonical beta relaxation detected by dielectric spectroscopy.
Collapse
Affiliation(s)
- P Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany.
| | | | | | | |
Collapse
|
15
|
Pardo LC, Lunkenheimer P, Loidl A. Dielectric spectroscopy in benzophenone: the beta relaxation and its relation to the mode-coupling Cole-Cole peak. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:030502. [PMID: 17930190 DOI: 10.1103/physreve.76.030502] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Indexed: 05/25/2023]
Abstract
We report a thorough characterization of the glassy dynamics of benzophenone by broadband dielectric spectroscopy. We detect a well-pronounced beta relaxation peak developing into an excess wing with increasing temperature. A previous analysis of results from Optical-Kerr-effect measurements of this material within the mode-coupling theory revealed a high-frequency Cole-Cole peak. We address the question if this phenomenon also may explain the Johari-Goldstein beta relaxation, a so-far unexplained spectral feature inherent to glass-forming matter, mainly observed in dielectric spectra. Our results demonstrate that according to the present status of theory, both spectral features seem not to be directly related.
Collapse
Affiliation(s)
- L C Pardo
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | | | | |
Collapse
|
16
|
Brodin A, Rössler EA. Depolarized light scattering versus optical Kerr effect. II. Insight into the dynamic susceptibility of molecular liquids. J Chem Phys 2007; 126:244508. [PMID: 17614565 DOI: 10.1063/1.2748390] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have previously discussed [J. Chem. Phys. 125, 114502 (2006)] that optical Kerr effect (OKE) and depolarized light scattering (DLS) data of molecular liquids reveal, each in their native domain, the same characteristic signatures of the glass transition dynamics; in particular, the intermediate power law of OKE is equivalent with the excess wing of the frequency-domain data, long since known in dielectric spectroscopy. We now extend the discussion to show that the excess wing is an equally common feature in DLS. We further discuss the time-temperature superposition property of OKE data in relation to our DLS and literature dielectric-spectroscopic results, and the merits of their mode coupling theory analyses. Spectroscopic signatures of a liquid-crystal-forming system (nematogen) are discussed in the same frame.
Collapse
Affiliation(s)
- Alexander Brodin
- Experimentalphysik II, Universität Bayreuth, D-95440 Bayreuth, Germany.
| | | |
Collapse
|
17
|
Greenall MJ, Cates ME. Crossover behavior and multistep relaxation in a schematic model of the cut-off glass transition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:051503. [PMID: 17677069 DOI: 10.1103/physreve.75.051503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Indexed: 05/16/2023]
Abstract
We study a schematic mode-coupling model in which the ideal glass transition is cut off by a decay of the quadratic coupling constant in the memory function. (Such a decay, on a time scale tau I , has been suggested as the likely consequence of activated processes.) If this decay is complete, so that only a linear coupling remains at late times, then the alpha relaxation shows a temporal crossover from a relaxation typical of the unmodified schematic model to a final strongly slower-than-exponential relaxation. This crossover, which differs somewhat in form from previous schematic models of the cutoff glass transition, resembles light-scattering experiments on colloidal systems, and can exhibit a "slower-than- alpha " relaxation feature hinted at there. We also consider what happens when a similar but incomplete decay occurs, so that a significant level of quadratic coupling remains for t>>tau I . In this case the correlator acquires a third, weaker relaxation mode at intermediate times. This empirically resembles the beta process seen in many molecular glass formers. It disappears when the initial as well as the final quadratic coupling lies on the liquid side of the glass transition, but remains present even when the final coupling is only just inside the liquid (so that the alpha relaxation time is finite, but too long to measure). Our results are suggestive of how, in a cutoff glass, the underlying "ideal" glass transition predicted by mode-coupling theory can remain detectable through qualitative features in dynamics.
Collapse
Affiliation(s)
- M J Greenall
- SUPA, School of Physics, University of Edinburgh, JCMB King's Buildings, Edinburgh, UK
| | | |
Collapse
|
18
|
Brodin A, Rössler EA. Depolarized light scattering versus optical Kerr effect spectroscopy of supercooled liquids: Comparative analysis. J Chem Phys 2006; 125:114502. [PMID: 16999485 DOI: 10.1063/1.2336782] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recently, heterodyne-detected optical Kerr effect (HD-OKE) spectroscopy was used to study dynamics of supercooled molecular liquids. The studies revealed an apparently new physical phenomenon that had not been reported before from the related depolarized light scattering (DLS), namely, an intermediate power law (nearly logarithmic decay) of the response functions [H. Cang et al., J. Chem. Phys. 118, 2800 (2003)]. Conceptually, HD-OKE and DLS data reflect optical anisotropy fluctuations mainly due to molecular reorientation dynamics in time and frequency domains, respectively. The above-mentioned effects are revealed in the mesoscopic range less, similar1 GHz ( greater, similar100 ps), where no direct comparison of the techniques was reported. In this Communication, we attempt such a comparison of exemplifying HD-OKE literature data of the glass-forming salol (phenyl salicylate), benzophenone, and liquid-crystal forming 4-cyano-4(')-pentylbiphenyl with DLS data of the same systems that we measured down to ca. 200 MHz by a combined tandem Fabry-Perot interferometer plus tandem-grating-monochromator technique. Generally, we find a satisfactory agreement, albeit in some cases with subtle differences at frequencies greater, similar10 GHz. We conclude that, in the mesoscopic dynamic range, HD-OKE and DLS studies provide consistent and comparable information, and therefore their conclusions must agree. We argue that the intermediate power law of HD-OKE is in essence a manifestation of the excess wing of the corresponding frequency-domain data, known long since from broadband dielectric spectroscopy and anticipated from DLS studies of supercooled liquids.
Collapse
Affiliation(s)
- Alexander Brodin
- Experimentalphysik II, Universität Bayreuth, D-95440 Bayreuth, Germany.
| | | |
Collapse
|