1
|
Lei X, Liu W, Zou W, Kurths J. Coexistence of oscillation and quenching states: Effect of low-pass active filtering in coupled oscillators. CHAOS (WOODBURY, N.Y.) 2019; 29:073110. [PMID: 31370423 DOI: 10.1063/1.5093919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Effects of a low-pass active filter (LPAF) on the transition processes from oscillation quenching to asymmetrical oscillation are explored for diffusively coupled oscillators. The low-pass filter part and the active part of LPAF exhibit different effects on the dynamics of these coupled oscillators. With the amplifying active part only, LPAF keeps the coupled oscillators staying in a nontrivial amplitude death (NTAD) and oscillation state. However, the additional filter is beneficial to induce a transition from a symmetrical oscillation death to an asymmetrical oscillation death and then to an asymmetrical oscillation state which is oscillating with different amplitudes for two oscillators. Asymmetrical oscillation state is coexisting with a synchronous oscillation state for properly presented parameters. With the attenuating active part only, LPAF keeps the coupled oscillators in rich oscillation quenching states such as amplitude death (AD), symmetrical oscillation death (OD), and NTAD. The additional filter tends to enlarge the AD domains but to shrink the symmetrical OD domains by increasing the areas of the coexistence of the oscillation state and the symmetrical OD state. The stronger filter effects enlarge the basin of the symmetrical OD state which is coexisting with the synchronous oscillation state. Moreover, the effects of the filter are general in globally coupled oscillators. Our results are important for understanding and controlling the multistability of coupled systems.
Collapse
Affiliation(s)
- Xiaoqi Lei
- School of Science, Jiangxi University of Science and Technology, Ganzhou341000, China
| | - Weiqing Liu
- School of Science, Jiangxi University of Science and Technology, Ganzhou341000, China
| | - Wei Zou
- School of Mathematical Sciences, South China Normal University, Guangzhou510631, People's Republic of China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Telegraphenberg, D-14415 Potsdam, Germany
| |
Collapse
|
2
|
Biswas D, Banerjee T, Kurths J. Effect of filtered feedback on birhythmicity: Suppression of birhythmic oscillation. Phys Rev E 2019; 99:062210. [PMID: 31330633 DOI: 10.1103/physreve.99.062210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 11/07/2022]
Abstract
The birhythmic oscillation, generally known as birhythmicity, arises in a plethora of physical, chemical, and biological systems. In this paper we investigate the effect of filtered feedback on birhythmicity as both are relevant in many living and engineering systems. We show that the presence of a low-pass filter in the feedback path of a birhythmic system suppresses birhythmicity and supports monorhythmic oscillations depending on the filtering parameter. Using harmonic decomposition and energy balance methods we determine the conditions for which birhythmicity is removed. We carry out a detailed bifurcation analysis to unveil the mechanism behind the quenching of birhythmic oscillations. Finally, we demonstrate our theoretical findings in analog simulation with electronic circuit. This study may have practical applications in quenching birhythmicity in several biochemical and physical systems.
Collapse
Affiliation(s)
- Debabrata Biswas
- Department of Physics, Rampurhat College, Birbhum 731224, West Bengal, India
| | - Tanmoy Banerjee
- Chaos and Complex Systems Research Laboratory, Department of Physics, University of Burdwan, Burdwan 713 104, West Bengal, India
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Telegraphenberg, D-14415 Potsdam, Germany.,Institute of Physics, Humboldt University Berlin, D-12489 Berlin, Germany
| |
Collapse
|
3
|
Bera BK. Low pass filtering mechanism enhancing dynamical robustness in coupled oscillatory networks. CHAOS (WOODBURY, N.Y.) 2019; 29:041104. [PMID: 31042931 DOI: 10.1063/1.5093496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
A network that consists of a set of active and inactive nodes is called a damaged network and this type of network shows an aging effect (degradation of dynamical activity). This dynamical deterioration affects the normal functioning of the network and also its performance. Therefore, it is necessary to design a proper mechanism to avoid undesired dynamical activity like degradation. In this work, an efficient mechanism, called the low pass filtering technique, is proposed to enhance the dynamical activity of damaged networks of coupled oscillators. Using this mechanism, the dynamic behavior of the damaged network of coupled active and inactive dynamical units is improved and the network survivability is ensured. Because a minor deviation of the controlling parameter is sufficient to restore the oscillatory behavior when the entire network undergoes an aging transition. Even when the whole network degrades due to the deterioration of each node, the larger values of the interaction strength and the controlling parameter play a key role in favor of the revival of dynamic activity in the entire network. Our proposed mechanism is very simple and effective to recover the dynamic features of a damaged network. The effectiveness of this technique has been testified in globally coupled and Erdős Rényi random networks of Stuart-Landau oscillators.
Collapse
Affiliation(s)
- Bidesh K Bera
- Department of Mathematics, Indian Institute of Technology Ropar, Punjab 140001, India
| |
Collapse
|
4
|
Zou W, Ocampo-Espindola JL, Senthilkumar DV, Kiss IZ, Zhan M, Kurths J. Quenching and revival of oscillations induced by coupling through adaptive variables. Phys Rev E 2019; 99:032214. [PMID: 30999495 DOI: 10.1103/physreve.99.032214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 06/09/2023]
Abstract
An adaptive coupling based on a low-pass filter (LPF) is proposed to manipulate dynamic activity of diffusively coupled dynamical systems. A theoretical analysis shows that tracking either the external or internal signal in the coupling via a LPF gives rise to distinctly different ways of regulating the rhythmicity of the coupled systems. When the external signals of the coupling are attenuated by a LPF, the macroscopic oscillations of the coupled system are quenched due to the emergence of amplitude or oscillation death. If the internal signals of the coupling are further filtered by a LPF, amplitude and oscillation deaths are effectively revoked to restore dynamic behaviors. The applicability of this approach is demonstrated in laboratory experiments of coupled oscillatory electrochemical reactions by inducing coupling through LPFs. Our study provides additional insight into (ar)rhythmogenesis in diffusively coupled systems.
Collapse
Affiliation(s)
- Wei Zou
- School of Mathematical Sciences, South China Normal University, Guangzhou 510631, People's Republic of China
| | | | - D V Senthilkumar
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram-695551, India
| | - István Z Kiss
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, USA
| | - Meng Zhan
- School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Telegraphenberg, Potsdam D-14415, Germany
- Institute of Physics, Humboldt University Berlin, Berlin D-12489, Germany
- Saratov State University, Saratov 4410012, Russia
| |
Collapse
|
5
|
Banerjee T, Biswas D, Ghosh D, Bandyopadhyay B, Kurths J. Transition from homogeneous to inhomogeneous limit cycles: Effect of local filtering in coupled oscillators. Phys Rev E 2018; 97:042218. [PMID: 29758758 DOI: 10.1103/physreve.97.042218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 06/08/2023]
Abstract
We report an interesting symmetry-breaking transition in coupled identical oscillators, namely, the continuous transition from homogeneous to inhomogeneous limit cycle oscillations. The observed transition is the oscillatory analog of the Turing-type symmetry-breaking transition from amplitude death (i.e., stable homogeneous steady state) to oscillation death (i.e., stable inhomogeneous steady state). This novel transition occurs in the parametric zone of occurrence of rhythmogenesis and oscillation death as a consequence of the presence of local filtering in the coupling path. We consider paradigmatic oscillators, such as Stuart-Landau and van der Pol oscillators, under mean-field coupling with low-pass or all-pass filtered self-feedback and through a rigorous bifurcation analysis we explore the genesis of this transition. Further, we experimentally demonstrate the observed transition, which establishes its robustness in the presence of parameter fluctuations and noise.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Chaos and Complex Systems Research Laboratory, Department of Physics, University of Burdwan, Burdwan 713 104, West Bengal, India
| | - Debabrata Biswas
- Department of Physics, Rampurhat College, Birbhum 731224, West Bengal, India
| | - Debarati Ghosh
- Chaos and Complex Systems Research Laboratory, Department of Physics, University of Burdwan, Burdwan 713 104, West Bengal, India
| | - Biswabibek Bandyopadhyay
- Chaos and Complex Systems Research Laboratory, Department of Physics, University of Burdwan, Burdwan 713 104, West Bengal, India
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Telegraphenberg, D-14415 Potsdam, Germany
- Institute of Physics, Humboldt University Berlin, D-12489 Berlin, Germany
- Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
6
|
Zou W, Zhan M, Kurths J. Revoking amplitude and oscillation deaths by low-pass filter in coupled oscillators. Phys Rev E 2017; 95:062206. [PMID: 28709198 DOI: 10.1103/physreve.95.062206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 11/07/2022]
Abstract
When in an ensemble of oscillatory units the interaction occurs through a diffusion-like manner, the intrinsic oscillations can be quenched through two structurally different scenarios: amplitude death (AD) and oscillation death (OD). Unveiling the underlying principles of stable rhythmic activity against AD and OD is a challenging issue of substantial practical significance. Here, by developing a low-pass filter (LPF) to track the output signals of the local system in the coupling, we show that it can revoke both AD and OD, and even the AD to OD transition, thereby giving rise to oscillations in coupled nonlinear oscillators under diverse death scenarios. The effectiveness of the local LPF is proven to be valid in an arbitrary network of coupled oscillators with distributed propagation delays. The constructive role of the local LPF in revoking deaths provides a potential dynamic mechanism of sustaining a reliable rhythmicity in real-world systems.
Collapse
Affiliation(s)
- Wei Zou
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, People's Republic of China
| | - Meng Zhan
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Telegraphenberg, Potsdam D-14415, Germany.,Institute of Physics, Humboldt University Berlin, Berlin D-12489, Germany.,Department of Control Theory, Nizhny Novgorod State University, Gagarin Avenue 23, 606950 Nizhny Novgorod, Russia
| |
Collapse
|
7
|
Amil P, Cabeza C, Masoller C, Martí AC. Organization and identification of solutions in the time-delayed Mackey-Glass model. CHAOS (WOODBURY, N.Y.) 2015; 25:043112. [PMID: 25933660 DOI: 10.1063/1.4918593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multistability in the long term dynamics of the Mackey-Glass (MG) delayed model is analyzed by using an electronic circuit capable of controlling the initial conditions. The system's phase-space is explored by varying the parameter values of two families of initial functions. The evolution equation of the electronic circuit is derived and it is shown that, in the continuous limit, it exactly corresponds to the MG model. In practice, when using a finite set of capacitors, an excellent agreement between the experimental observations and the numerical simulations is manifested. As the delay is increased, different periodic or aperiodic solutions appear. We observe abundant periodic solutions that have the same period but a different alternation of peaks of dissimilar amplitudes and propose a novel symbolic method to classify these solutions.
Collapse
Affiliation(s)
- Pablo Amil
- Facultad de Ciencias, Universidad de la República, Igua 4225, Montevideo, Uruguay
| | - Cecilia Cabeza
- Facultad de Ciencias, Universidad de la República, Igua 4225, Montevideo, Uruguay
| | - Cristina Masoller
- Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa, Barcelona, Spain
| | - Arturo C Martí
- Facultad de Ciencias, Universidad de la República, Igua 4225, Montevideo, Uruguay
| |
Collapse
|
8
|
de Oliveira GF, de Souza Cavalcante HLD, di Lorenzo O, Chevrollier M, Passerat de Silans T, Oriá M. Tunable power law in the desynchronization events of coupled chaotic electronic circuits. CHAOS (WOODBURY, N.Y.) 2014; 24:013105. [PMID: 24697367 DOI: 10.1063/1.4861815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We study the statistics of the amplitude of the synchronization error in chaotic electronic circuits coupled through linear feedback. Depending on the coupling strength, our system exhibits three qualitatively different regimes of synchronization: weak coupling yields independent oscillations; moderate to strong coupling produces a regime of intermittent synchronization known as attractor bubbling; and stronger coupling produces complete synchronization. In the regime of moderate coupling, the probability distribution for the sizes of desynchronization events follows a power law, with an exponent that can be adjusted by changing the coupling strength. Such power-law distributions are interesting, as they appear in many complex systems. However, most of the systems with such a behavior have a fixed value for the exponent of the power law, while here we present an example of a system where the exponent of the power law is easily tuned in real time.
Collapse
Affiliation(s)
- Gilson F de Oliveira
- Departamento de Física, Universidade Federal da Paraíba, 58051-900 João Pessoa, PB, Brazil
| | | | - Orlando di Lorenzo
- Departamento de Física, Universidade Federal da Paraíba, 58051-900 João Pessoa, PB, Brazil
| | - Martine Chevrollier
- Departamento de Física, Universidade Federal da Paraíba, 58051-900 João Pessoa, PB, Brazil
| | | | - Marcos Oriá
- Departamento de Física, Universidade Federal da Paraíba, 58051-900 João Pessoa, PB, Brazil
| |
Collapse
|
9
|
Senthilkumar DV, Pesquera L, Banerjee S, Ortín S, Kurths J. Exact synchronization bound for coupled time-delay systems. Phys Rev E 2013; 87:044902. [PMID: 23679553 DOI: 10.1103/physreve.87.044902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/17/2012] [Indexed: 11/07/2022]
Abstract
We obtain an exact bound for synchronization in coupled time-delay systems using the generalized Halanay inequality for the general case of time-dependent delay, coupling, and coefficients. Furthermore, we show that the same analysis is applicable to both uni- and bidirectionally coupled time-delay systems with an appropriate evolution equation for their synchronization manifold, which can also be defined for different types of synchronization. The exact synchronization bound assures an exponential stabilization of the synchronization manifold which is crucial for applications. The analytical synchronization bound is independent of the nature of the modulation and can be applied to any time-delay system satisfying a Lipschitz condition. The analytical results are corroborated numerically using the Ikeda system.
Collapse
Affiliation(s)
- D V Senthilkumar
- Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
| | | | | | | | | |
Collapse
|
10
|
Ghosh D, Grosu I, Dana SK. Design of coupling for synchronization in time-delayed systems. CHAOS (WOODBURY, N.Y.) 2012; 22:033111. [PMID: 23020450 DOI: 10.1063/1.4731797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report a design of delay coupling for targeting desired synchronization in delay dynamical systems. We target synchronization, antisynchronization, lag-and antilag-synchronization, amplitude death (or oscillation death), and generalized synchronization in mismatched oscillators. A scaling of the size of an attractor is made possible in different synchronization regimes. We realize a type of mixed synchronization where synchronization and antisynchronization coexist in different pairs of state variables of the coupled system. We establish the stability condition of synchronization using the Krasovskii-Lyapunov function theory and the Hurwitz matrix criterion. We present numerical examples using the Mackey-Glass system and a delay Rössler system.
Collapse
Affiliation(s)
- Dibakar Ghosh
- Department of Mathematics, University of Kalyani, West Bengal 741235, India
| | | | | |
Collapse
|
11
|
Srinivasan K, Senthilkumar DV, Murali K, Lakshmanan M, Kurths J. Synchronization transitions in coupled time-delay electronic circuits with a threshold nonlinearity. CHAOS (WOODBURY, N.Y.) 2011; 21:023119. [PMID: 21721761 DOI: 10.1063/1.3591791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Experimental observations of typical kinds of synchronization transitions are reported in unidirectionally coupled time-delay electronic circuits with a threshold nonlinearity and two time delays, namely feedback delay τ(1) and coupling delay τ(2). We have observed transitions from anticipatory to lag via complete synchronization and their inverse counterparts with excitatory and inhibitory couplings, respectively, as a function of the coupling delay τ(2). The anticipating and lag times depend on the difference between the feedback and the coupling delays. A single stability condition for all the different types of synchronization is found to be valid as the stability condition is independent of both the delays. Further, the existence of different kinds of synchronizations observed experimentally is corroborated by numerical simulations and from the changes in the Lyapunov exponents of the coupled time-delay systems.
Collapse
Affiliation(s)
- K Srinivasan
- Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirapalli 620024, India
| | | | | | | | | |
Collapse
|
12
|
Senthilkumar DV, Kurths J, Lakshmanan M. Stability of synchronization in coupled time-delay systems using Krasovskii-Lyapunov theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:066208. [PMID: 19658584 DOI: 10.1103/physreve.79.066208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Indexed: 05/28/2023]
Abstract
Stability of synchronization in unidirectionally coupled time-delay systems is studied using the Krasovskii-Lyapunov theory. We have shown that the same general stability condition is valid for different cases, even for the general situation (but with a constraint) where all the coefficients of the error equation corresponding to the synchronization manifold are time dependent. These analytical results are also confirmed by the numerical simulation of paradigmatic examples.
Collapse
|
13
|
Soriano MC, Ruiz-Oliveras F, Colet P, Mirasso CR. Synchronization properties of coupled semiconductor lasers subject to filtered optical feedback. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:046218. [PMID: 18999519 DOI: 10.1103/physreve.78.046218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 04/22/2008] [Indexed: 05/27/2023]
Abstract
We study numerically the synchronization properties of two unidirectionally coupled semiconductor lasers subject to filtered optical feedback. By adding a perturbation (a message) to the output of the master laser, we show that mutual information allows distinguishing between chaotic synchronization (at low to moderate coupling strengths) and injection locking (at large coupling strength). We find that a receiver subject to a feedback similar to that of the emitter (closed-loop receiver) shows better synchronization with the master laser when compared with a receiver without feedback (open-loop receiver). Closed-loop receivers also show better capability to recover weak messages. The filter in the feedback loop allows reducing the bandwidth of the chaotic carrier, improves the synchronization with respect to the conventional feedback case, and requires less coupling strength with a minor loss in complexity.
Collapse
Affiliation(s)
- Miguel C Soriano
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
14
|
Sano S, Uchida A, Yoshimori S, Roy R. Dual synchronization of chaos in Mackey-Glass electronic circuits with time-delayed feedback. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:016207. [PMID: 17358235 DOI: 10.1103/physreve.75.016207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Indexed: 05/14/2023]
Abstract
We experimentally and numerically demonstrate the dual synchronization of chaos in two pairs of one-way-coupled Mackey-Glass electronic circuits with time-delayed feedback. The outputs of the two drive circuits are mixed and used both for the feedback signal to the two drive circuits and for the transmission signal to the two response circuits. We investigate the regions for achieving dual synchronization of chaos when the delay time is mismatched between the drive and response circuits.
Collapse
Affiliation(s)
- Satoshi Sano
- Department of Electronics and Computer Systems, Takushoku University, 815-1 Tatemachi, Hachioji, Tokyo 193-0985, Japan
| | | | | | | |
Collapse
|