1
|
Li L, Hu J, Shi X, Różycki B, Song F. Interplay between cooperativity of intercellular receptor-ligand binding and coalescence of nanoscale lipid clusters in adhering membranes. SOFT MATTER 2021; 17:1912-1920. [PMID: 33416062 DOI: 10.1039/d0sm01904f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adhesion of biological cells is mediated by the specific binding of receptors and ligands which are typically large proteins spanning through the plasma membranes of the contacting cells. The receptors and ligands can exhibit affinity for nanoscale lipid clusters that form within the plasma membrane. A central question is how these nanoscale lipid clusters physically affect and respond to the receptor-ligand binding during cell adhesion. Within the framework of classical statistical mechanics we find that the receptor-ligand binding reduces the threshold energy for lipid clusters to coalesce into mesoscale domains by up to ∼50%, and that the formation of these domains induces significant cooperativity of the receptor-ligand binding. The interplay between the receptor-ligand binding cooperativity and the lipid domain formation manifests acute sensitivity of the membrane system to changes in control parameters. This sensitivity can be crucial in cell signaling and immune responses.
Collapse
Affiliation(s)
- Long Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xinghua Shi
- National Center for Nanoscience and Technology of China, Beijing, China
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw, Poland.
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China. and School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
A Rationale for Mesoscopic Domain Formation in Biomembranes. Biomolecules 2018; 8:biom8040104. [PMID: 30274275 PMCID: PMC6316292 DOI: 10.3390/biom8040104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022] Open
Abstract
Cell plasma membranes display a dramatically rich structural complexity characterized by functional sub-wavelength domains with specific lipid and protein composition. Under favorable experimental conditions, patterned morphologies can also be observed in vitro on model systems such as supported membranes or lipid vesicles. Lipid mixtures separating in liquid-ordered and liquid-disordered phases below a demixing temperature play a pivotal role in this context. Protein-protein and protein-lipid interactions also contribute to membrane shaping by promoting small domains or clusters. Such phase separations displaying characteristic length-scales falling in-between the nanoscopic, molecular scale on the one hand and the macroscopic scale on the other hand, are named mesophases in soft condensed matter physics. In this review, we propose a classification of the diverse mechanisms leading to mesophase separation in biomembranes. We distinguish between mechanisms relying upon equilibrium thermodynamics and those involving out-of-equilibrium mechanisms, notably active membrane recycling. In equilibrium, we especially focus on the many mechanisms that dwell on an up-down symmetry breaking between the upper and lower bilayer leaflets. Symmetry breaking is an ubiquitous mechanism in condensed matter physics at the heart of several important phenomena. In the present case, it can be either spontaneous (domain buckling) or explicit, i.e., due to an external cause (global or local vesicle bending properties). Whenever possible, theoretical predictions and simulation results are confronted to experiments on model systems or living cells, which enables us to identify the most realistic mechanisms from a biological perspective.
Collapse
|
3
|
Gueguen G, Destainville N, Manghi M. Fluctuation tension and shape transition of vesicles: renormalisation calculations and Monte Carlo simulations. SOFT MATTER 2017; 13:6100-6117. [PMID: 28885628 DOI: 10.1039/c7sm01272a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It has been known for long that the fluctuation surface tension of membranes r, computed from the height fluctuation spectrum, is not equal to the bare surface tension σ, which is introduced in the theory either as a Lagrange multiplier to conserve the total membrane area or as an external constraint. In this work we relate these two surface tensions both analytically and numerically. They are also compared to the Laplace tension γ, and the mechanical frame tension τ. Using the Helfrich model and one-loop renormalisation calculations, we obtain, in addition to the effective bending modulus κeff, a new expression for the effective surface tension σeff = σ - εkBT/(2ap) where kBT is the thermal energy, ap the projected cut-off area, and ε = 3 or 1 according to the allowed configurations that keep either the projected area or the total area constant. Moreover we show that the crumpling transition for an infinite planar membrane occurs for σeff = 0, and also that it coincides with vanishing Laplace and frame tensions. Using extensive Monte Carlo (MC) simulations, triangulated membranes of vesicles made of N = 100-2500 vertices are simulated within the Helfrich theory. As compared to alternative numerical models, no local constraint is applied and the shape is only controlled by the constant volume, the spontaneous curvature and σ. It is shown that the numerical fluctuation surface tension r is equal to σeff both with radial MC moves (ε = 3) and with corrected MC moves locally normal to the fluctuating membrane (ε = 1). For finite vesicles of typical size R, two different regimes are defined: a tension regime for [small sigma, Greek, circumflex]eff = σeffR2/κeff > 0 and a bending one for -1 < [small sigma, Greek, circumflex]eff < 0. A shape transition from a quasi-spherical shape imposed by the large surface energy, to more deformed shapes only controlled by the bending energy, is observed numerically at [small sigma, Greek, circumflex]eff ≃ 0. We propose that the buckling transition, observed for planar supported membranes in the literature, occurs for [small sigma, Greek, circumflex]eff ≃ -1, the associated negative frame tension playing the role of a compressive force. Hence, a precise control of the value of σeff in simulations cannot but enhance our understanding of shape transitions of vesicles and cells.
Collapse
Affiliation(s)
- Guillaume Gueguen
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France.
| | | | | |
Collapse
|
4
|
Dean DS, Parsegian VA, Podgornika R. Fluctuation mediated interactions due to rigidity mismatch and their effect on miscibility of lipid mixtures in multicomponent membranes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:214004. [PMID: 25965339 DOI: 10.1088/0953-8984/27/21/214004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We consider how membrane fluctuations can modify the miscibility of lipid mixtures, that is to say how the phase diagram of a boundary-constrained membrane is modified when the membrane is allowed to fluctuate freely in the case of zero surface tension. In order for fluctuations to have an effect, the different lipid types must have differing Gaussian rigidities. We show, somewhat paradoxically, that fluctuation-induced interactions can be treated approximately in a mean-field type theory. Our calculations predict that, depending on the difference in bending and Gaussian rigidity of the lipids, membrane fluctuations can either favor or disfavor mixing.
Collapse
Affiliation(s)
- David S Dean
- Université de Bordeaux and CNRS, Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR 5798, F-33400 Talence, France
| | | | | |
Collapse
|
5
|
Deserno M. Fluid lipid membranes: From differential geometry to curvature stresses. Chem Phys Lipids 2015; 185:11-45. [DOI: 10.1016/j.chemphyslip.2014.05.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/21/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
|
6
|
Gueguen G, Destainville N, Manghi M. Mixed lipid bilayers with locally varying spontaneous curvature and bending. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:31. [PMID: 25160487 DOI: 10.1140/epje/i2014-14076-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/21/2014] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
A model of lipid bilayers made of a mixture of two lipids with different average compositions on both leaflets, is developed. A Landau Hamiltonian describing the lipid-lipid interactions on each leaflet, with two lipidic fields ψ 1 and ψ 2, is coupled to a Helfrich one, accounting for the membrane elasticity, via both a local spontaneous curvature, which varies as C 0 + C 1(ψ 1 - ψ 2/2), and a bending modulus equal to κ 0 + κ 1(ψ 1 + ψ 2)/2. This model allows us to define curved patches as membrane domains where the asymmetry in composition, ψ 1 - ψ 2, is large, and thick and stiff patches where ψ 1 + ψ 2 is large. These thick patches are good candidates for being lipidic rafts, as observed in cell membranes, which are composed primarily of saturated lipids forming a liquid-ordered domain and are known to be thick and flat nano-domains. The lipid-lipid structure factors and correlation functions are computed for globally spherical membranes and planar ones and for a whole set of parameters including the surface tension and the coupling in the two leaflet compositions. Phase diagrams are established, within a Gaussian approximation, showing the occurrence of two types of Structure Disordered phases, with correlations between either curved or thick patches, and an Ordered phase, corresponding to the divergence of the structure factor at a finite wave vector. The varying bending modulus plays a central role for curved membranes, where the driving force κ 1 C 0 (2) is balanced by the line tension, to form raft domains of size ranging from 10 to 100 nm. For planar membranes, raft domains emerge via the cross-correlation with curved domains. A global picture emerges from curvature-induced mechanisms, described in the literature for planar membranes, to coupled curvature- and bending-induced mechanisms in curved membranes forming a closed vesicle.
Collapse
Affiliation(s)
- Guillaume Gueguen
- UPS, Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse, F-31062, Toulouse, France
| | | | | |
Collapse
|
7
|
Yolcu C, Deserno M. Membrane-mediated interactions between rigid inclusions: an effective field theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031906. [PMID: 23030943 DOI: 10.1103/physreve.86.031906] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/27/2012] [Indexed: 06/01/2023]
Abstract
An approach based on effective field theory (EFT) is discussed and applied to the problem of surface-mediated interactions between rigid inclusions of circular footprint on a membrane. Instead of explicitly constraining the surface fluctuations in accord with the boundary conditions around the inclusions, the EFT formalism rewrites the theory; the Hamiltonian of a freely fluctuating surface is augmented by pointwise localized terms that capture the same constraints. This allows one to compute the interaction free energy as an asymptotic expansion in inverse separations in a systematic, efficient, and transparent way. Both entropic (fluctuation-induced, Casimir-like) and curvature-elastic (ground-state) forces are considered. Our findings include higher-order corrections to known asymptotic results, on both the pair and the multibody levels. We also show that the few previous attempts in the literature at predicting subleading orders missed some terms due to an uncontrolled point-particle approximation.
Collapse
Affiliation(s)
- Cem Yolcu
- Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
8
|
Meilhac N, Destainville N. Clusters of proteins in biomembranes: insights into the roles of interaction potential shapes and of protein diversity. J Phys Chem B 2011; 115:7190-9. [PMID: 21528886 DOI: 10.1021/jp1099865] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It has recently been proposed that proteins embedded in lipidic biomembranes can spontaneously self-organize into stable small clusters, or membrane nanodomains, due to the competition between short-range attractive and longer-range repulsive forces between proteins, specific to these systems. In this paper, we carry on our investigation, by Monte Carlo simulations, of different aspects of cluster phases of proteins in biomembranes. First, we compare different long-range potentials (including notably three-body terms) to demonstrate that the existence of cluster phases should be quite generic. Furthermore, a real membrane contains hundreds of different protein species that are far from being randomly distributed in these nanodomains. We take this protein diversity into account by modulating protein-protein interaction potentials both at short and longer range. We confirm theoretical predictions in terms of biological cluster specialization by deciphering how clusters recruit only a few protein species. In this respect, we highlight that cluster phases can turn out to be an advantage at the biological level, for example by enhancing the cell response to external stimuli.
Collapse
Affiliation(s)
- Nicolas Meilhac
- Université de Toulouse, UPS, Laboratoire de Physique Théorique (IRSAMC), Toulouse, France
| | | |
Collapse
|
9
|
Heberle FA, Wu J, Goh SL, Petruzielo RS, Feigenson GW. Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys J 2011; 99:3309-18. [PMID: 21081079 DOI: 10.1016/j.bpj.2010.09.064] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/08/2010] [Accepted: 09/29/2010] [Indexed: 01/28/2023] Open
Abstract
Phase diagrams of ternary lipid mixtures containing cholesterol have provided valuable insight into cell membrane behaviors, especially by describing regions of coexisting liquid-disordered (Ld) and liquid-ordered (Lo) phases. Fluorescence microscopy imaging of giant unilamellar vesicles has greatly assisted the determination of phase behavior in these systems. However, the requirement for optically resolved Ld + Lo domains can lead to the incorrect inference that in lipid-only mixtures, Ld + Lo domain coexistence generally shows macroscopic domains. Here we show this inference is incorrect for the low melting temperature phosphatidylcholines abundant in mammalian plasma membranes. By use of high compositional resolution Förster resonance energy transfer measurements, together with electron spin resonance data and spectral simulation, we find that ternary mixtures of DSPC and cholesterol together with either POPC or SOPC, do indeed have regions of Ld + Lo coexistence. However, phase domains are much smaller than the optical resolution limit, likely on the order of the Förster distance for energy transfer (R(0), ∼2-8 nm).
Collapse
Affiliation(s)
- Frederick A Heberle
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
10
|
Wesołowska O, Michalak K, Hendrich AB. Direct visualization of phase separation induced by phenothiazine-type antipsychotic drugs in model lipid membranes. Mol Membr Biol 2010; 28:103-14. [PMID: 21190429 DOI: 10.3109/09687688.2010.533706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipid rafts constitute dynamic assemblies within a bilayer, engaged in, e.g., signal transduction, membrane trafficking and cell polarization. Despite wide interest in the process of domain formation in binary or ternary lipid model systems, only a limited number of papers are devoted to the influence of different additives on this process. In particular, works devoted to the role of drugs in raft formation are missing. In the present study, the influence of trifluoperazine, thioridazine and chlorpromazine on domain organization in raft-mimicking model membranes was investigated. Using giant unilamellar vesicles formed from an equimolar DOPC:sphingomyelin:cholesterol mixture, we found that phenothiazines elevated the number of domains, decreased their area and markedly increased the total length of the domain border. The impact of studied drugs on phase separation in the raft lipid mixture was also confirmed by Laurdan generalized polarization measurements. Alteration of domain organization induced by antipsychotic drugs was very likely to arise from selective accumulation of phenothiazines in interfacial regions between liquid ordered and liquid disordered domains. Interpretation of the results allowed us to demonstrate new aspects underlaying mechanisms of action of phenothiazine-type antipsychotic drugs. To the best of our knowledge, this is the first report demonstrating the influence of drugs on domain morphology directly visualized in giant unilamellar vesicles.
Collapse
Affiliation(s)
- Olga Wesołowska
- Department of Biophysics, Wrocław Medical University, Wrocław, Poland
| | | | | |
Collapse
|
11
|
Bitbol AF, Dommersnes PG, Fournier JB. Fluctuations of the Casimir-like force between two membrane inclusions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:050903. [PMID: 20866178 DOI: 10.1103/physreve.81.050903] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Indexed: 05/29/2023]
Abstract
Although Casimir forces are inseparable from their fluctuations, little is known about these fluctuations in soft matter systems. We use the membrane stress tensor to study the fluctuations of the membrane-mediated Casimir-like force. This method enables us to recover the Casimir force between two inclusions and to calculate its variance. We show that the Casimir force is dominated by its fluctuations. Furthermore, when the distance d between the inclusions is decreased from infinity, the variance of the Casimir force decreases as -1/d2. This distance dependence shares a common physical origin with the Casimir force itself.
Collapse
Affiliation(s)
- Anne-Florence Bitbol
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Diderot, Paris 7 and UMR CNRS 7057, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13, France
| | | | | |
Collapse
|
12
|
Dean DS, Gopinathan A. Out-of-equilibrium behavior of Casimir-type fluctuation-induced forces for free classical fields. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:041126. [PMID: 20481696 DOI: 10.1103/physreve.81.041126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Indexed: 05/29/2023]
Abstract
We present a general method to study the nonequilibrium behavior of Casimir-type fluctuation-induced forces for classical free scalar field theories. In particular, we analyze the temporal evolution of the force toward its equilibrium value when the field dynamics is given by a general class of overdamped stochastic dynamics (including the model A and model B classes). The steady-state force is also analyzed for systems which have nonequilibrium steady states, for instance, where they are driven by colored noise. The key to the method is that the out of equilibrium force is computed by specifying an energy of interaction between the field and the surfaces in the problem. In general, we find that there is a mapping of the dynamical problem onto a corresponding static one and in the case where the latter can be solved, the full dynamical behavior of the force can be extracted. The method is used to compute the nonequilibrium Casimir force induced between two parallel plates by a fluctuating field, in the cases of Dirichlet, Neumann, and mixed boundary conditions. Various other examples, such as the fluctuation-induced force between inclusions in fluctuating media, are discussed.
Collapse
Affiliation(s)
- David S Dean
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, UPS and CNRS, 118 Route de Narbonne, 31062 Toulouse Cedex 4, France
| | | |
Collapse
|
13
|
Abstract
Cellular membranes are a heterogeneous mix of lipids, proteins and small molecules. Special groupings enriched in saturated lipids and cholesterol form liquid-ordered domains, known as "lipid rafts," thought to serve as platforms for signaling, trafficking and material transport throughout the secretory pathway. Questions remain as to how the cell maintains small fluid lipid domains, through time, on a length scale consistent with the fact that no large-scale phase separation is observed. Motivated by these examples, we have utilized a combination of mechanical modeling and in vitro experiments to show that membrane morphology plays a key role in maintaining small domain sizes and organizing domains in a model membrane. We demonstrate that lipid domains can adopt a flat or dimpled morphology, where the latter facilitates a repulsive interaction that slows coalescence and helps regulate domain size and tends to laterally organize domains in the membrane.
Collapse
|
14
|
Destainville N, Dumas F, Salomé L. What do diffusion measurements tell us about membrane compartmentalisation? Emergence of the role of interprotein interactions. J Chem Biol 2008; 1:37-48. [PMID: 19568797 PMCID: PMC2698319 DOI: 10.1007/s12154-008-0005-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 03/11/2008] [Indexed: 01/28/2023] Open
Abstract
The techniques of diffusion analysis based on optical microscopy approaches have revealed a great diversity of the dynamic organisation of cell membranes. For a long period, two frameworks have dominated the way of representing the membrane structure: the membrane skeleton fences and the lipid raft models. Progresses in the methods of data analysis have shed light on the features and consequently the possible origin of membrane domains: Inter-protein interactions play a role in confinement. Innovative developments pushing forward the spatiotemporal resolution limits are currently emerging, which are likely to provide in the future a detailed understanding of the intimate functional dynamic organisation of the cell membrane.
Collapse
Affiliation(s)
- Nicolas Destainville
- Institut de Pharmacologie et Biologie Structurale, UMR 5089 CNRS, Université Paul Sabatier, 205 Route de Narbonne, 31062 Toulouse, France
- Laboratoire de Physique Théorique, IRSAMC, UMR 5152 CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Fabrice Dumas
- Institut de Pharmacologie et Biologie Structurale, UMR 5089 CNRS, Université Paul Sabatier, 205 Route de Narbonne, 31062 Toulouse, France
- Cell Biophysics Laboratory, London Research Institute Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London, WC2 3PX UK
| | - Laurence Salomé
- Institut de Pharmacologie et Biologie Structurale, UMR 5089 CNRS, Université Paul Sabatier, 205 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
15
|
Dean DS, Horgan RR. Path integrals for stiff polymers applied to membrane physics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:041102. [PMID: 17994931 DOI: 10.1103/physreve.76.041102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Indexed: 05/25/2023]
Abstract
Path integrals similar to those describing stiff polymers arise in the Helfrich model for membranes. We show how these types of path integrals can be evaluated and apply our results to study the thermodynamics of a minority stripe phase in a bulk membrane. The fluctuation induced contribution to the line tension between the stripe and the bulk phase is computed. Also the effective interaction between the interfaces of the two phases can be computed. Explicit forms are given for this Casmir-like interaction in the tensionless case where the two phases have differing bending rigidities.
Collapse
Affiliation(s)
- D S Dean
- IRSAMC, Laboratoire de Physique Théorique, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 04, France.
| | | |
Collapse
|