• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698278)   Today's Articles (88)
For: Henry BI, Langlands TAM, Wearne SL. Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. Phys Rev E Stat Nonlin Soft Matter Phys 2006;74:031116. [PMID: 17025603 DOI: 10.1103/physreve.74.031116] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Indexed: 05/12/2023]
Number Cited by Other Article(s)
1
Traytak SD. Fractional differentiation method: Some applications to the theory of subdiffusion-controlled reactions. Phys Rev E 2024;110:044145. [PMID: 39562879 DOI: 10.1103/physreve.110.044145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/03/2024] [Indexed: 11/21/2024]
2
Waigh TA, Korabel N. Heterogeneous anomalous transport in cellular and molecular biology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023;86:126601. [PMID: 37863075 DOI: 10.1088/1361-6633/ad058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
3
Kosztołowicz T. Subdiffusion with particle immobilization process described by a differential equation with Riemann-Liouville-type fractional time derivative. Phys Rev E 2023;108:014132. [PMID: 37583171 DOI: 10.1103/physreve.108.014132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
4
Alexander AM, Lawley SD. Inferences from FRAP data are model dependent: A subdiffusive analysis. Biophys J 2022;121:3795-3810. [PMID: 36127879 PMCID: PMC9674994 DOI: 10.1016/j.bpj.2022.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]  Open
5
A New Parallelized Computation Method of HASC-N Difference Scheme for Inhomogeneous Time Fractional Fisher Equation. FRACTAL AND FRACTIONAL 2022. [DOI: 10.3390/fractalfract6050259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
6
Abad E, Angstmann CN, Henry BI, McGann AV, Le Vot F, Yuste SB. Reaction-diffusion and reaction-subdiffusion equations on arbitrarily evolving domains. Phys Rev E 2020;102:032111. [PMID: 33075977 DOI: 10.1103/physreve.102.032111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023]
7
Lawley SD. Subdiffusion-limited fractional reaction-subdiffusion equations with affine reactions: Solution, stochastic paths, and applications. Phys Rev E 2020;102:042125. [PMID: 33212732 DOI: 10.1103/physreve.102.042125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
8
Angstmann CN, Henry BI. Time Fractional Fisher-KPP and Fitzhugh-Nagumo Equations. ENTROPY 2020;22:e22091035. [PMID: 33286804 PMCID: PMC7597094 DOI: 10.3390/e22091035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/16/2022]
9
Lawley SD. Anomalous reaction-diffusion equations for linear reactions. Phys Rev E 2020;102:032117. [PMID: 33076018 DOI: 10.1103/physreve.102.032117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
10
Liang Y, Sandev T, Lenzi EK. Reaction and ultraslow diffusion on comb structures. Phys Rev E 2020;101:042119. [PMID: 32422761 DOI: 10.1103/physreve.101.042119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/20/2020] [Indexed: 11/07/2022]
11
Fractional Model for a Class of Diffusion-Reaction Equation Represented by the Fractional-Order Derivative. FRACTAL AND FRACTIONAL 2020. [DOI: 10.3390/fractalfract4020015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
12
Gschwend GC, Kazmierczak M, Olaya AJ, Brevet PF, Girault HH. Two dimensional diffusion-controlled triplet-triplet annihilation kinetics. Chem Sci 2019;10:7633-7640. [PMID: 31588315 PMCID: PMC6761882 DOI: 10.1039/c9sc00957d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/28/2019] [Indexed: 01/14/2023]  Open
13
Ascolani G, Liò P. Modeling breast cancer progression to bone: how driver mutation order and metabolism matter. BMC Med Genomics 2019;12:106. [PMID: 31345216 PMCID: PMC6657267 DOI: 10.1186/s12920-019-0541-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]  Open
14
Kosztołowicz T. Model of anomalous diffusion-absorption process in a system consisting of two different media separated by a thin membrane. Phys Rev E 2019;99:022127. [PMID: 30934262 DOI: 10.1103/physreve.99.022127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Indexed: 11/07/2022]
15
Xu J, Jiang G. Continuous time random walk with local particle-particle interaction. Phys Rev E 2018;97:052132. [PMID: 29906907 DOI: 10.1103/physreve.97.052132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Indexed: 11/07/2022]
16
Owolabi KM, Atangana A. Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations. CHAOS, SOLITONS & FRACTALS 2018;111:119-127. [DOI: 10.1016/j.chaos.2018.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
17
Xu J, Jiang G. Time-fractional characterization of brine reaction and precipitation in porous media. Phys Rev E 2018;97:042133. [PMID: 29758627 DOI: 10.1103/physreve.97.042133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 11/07/2022]
18
Angstmann CN, Henry BI, McGann AV. Generalized fractional diffusion equations for subdiffusion in arbitrarily growing domains. Phys Rev E 2018;96:042153. [PMID: 29347596 DOI: 10.1103/physreve.96.042153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 11/07/2022]
19
Le Vot F, Abad E, Yuste SB. Continuous-time random-walk model for anomalous diffusion in expanding media. Phys Rev E 2017;96:032117. [PMID: 29347028 DOI: 10.1103/physreve.96.032117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 06/07/2023]
20
Fractional Diffusion in a Solid with Mass Absorption. ENTROPY 2017. [DOI: 10.3390/e19050203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
21
Kosztołowicz T. Subdiffusion–absorption process in a system consisting of two different media. J Chem Phys 2017;146:084114. [DOI: 10.1063/1.4976843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]  Open
22
Lapeyre GJ, Dentz M. Reaction–diffusion with stochastic decay rates. Phys Chem Chem Phys 2017;19:18863-18879. [DOI: 10.1039/c7cp02971c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
23
Hong T, Tang Z, Zhu H. Anomalous dielectric relaxation with linear reaction dynamics in space-dependent force fields. J Chem Phys 2016;145:244105. [PMID: 28049303 DOI: 10.1063/1.4972863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
24
Javierre E. Impact of anomalous transport kinetics on the progress of wound healing. Med Eng Phys 2016;38:885-94. [PMID: 27461569 DOI: 10.1016/j.medengphy.2016.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/12/2016] [Accepted: 04/03/2016] [Indexed: 11/15/2022]
25
Modeling Fluid’s Dynamics with Master Equations in Ultrametric Spaces Representing the Treelike Structure of Capillary Networks. ENTROPY 2016. [DOI: 10.3390/e18070249] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
26
Prodanov D, Delbeke J. A model of space-fractional-order diffusion in the glial scar. J Theor Biol 2016;403:97-109. [PMID: 27179458 DOI: 10.1016/j.jtbi.2016.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/23/2016] [Accepted: 04/26/2016] [Indexed: 01/28/2023]
27
Blanc E, Engblom S, Hellander A, Lötstedt P. MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME. MULTISCALE MODELING & SIMULATION : A SIAM INTERDISCIPLINARY JOURNAL 2016;14:668-707. [PMID: 29046618 PMCID: PMC5642307 DOI: 10.1137/15m1013110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
28
Angstmann CN, Henry BI, McGann AV. A Fractional Order Recovery SIR Model from a Stochastic Process. Bull Math Biol 2016;78:468-99. [PMID: 26940822 DOI: 10.1007/s11538-016-0151-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/22/2016] [Indexed: 11/27/2022]
29
Sandev T, Chechkin AV, Korabel N, Kantz H, Sokolov IM, Metzler R. Distributed-order diffusion equations and multifractality: Models and solutions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015;92:042117. [PMID: 26565178 DOI: 10.1103/physreve.92.042117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 06/05/2023]
30
Qian J, Zhan H, Zhang Y, Sun P, Liu Y. Numerical Simulation and Experimental Study of Bimolecular Reactive Transport in Porous Media. Transp Porous Media 2015. [DOI: 10.1007/s11242-015-0549-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
31
Hansen SK, Berkowitz B. Integrodifferential formulations of the continuous-time random walk for solute transport subject to bimolecular A+B→0 reactions: From micro- to mesoscopic. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015;91:032113. [PMID: 25871060 DOI: 10.1103/physreve.91.032113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 06/04/2023]
32
Straka P, Fedotov S. Transport equations for subdiffusion with nonlinear particle interaction. J Theor Biol 2015;366:71-83. [DOI: 10.1016/j.jtbi.2014.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 10/30/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
33
Soula H, Caré B, Beslon G, Berry H. Reply to the comment by V. P. Shkilev on "anomalous versus slowed-down Brownian diffusion in the ligand-binding equilibrium". Biophys J 2015;106:2544-6. [PMID: 24896135 DOI: 10.1016/j.bpj.2014.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]  Open
34
Kosztołowicz T. Cattaneo-type subdiffusion-reaction equation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014;90:042151. [PMID: 25375482 DOI: 10.1103/physreve.90.042151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Indexed: 06/04/2023]
35
Kosztołowicz T, Lewandowska KD. Subdiffusion-reaction processes with A→B reactions versus subdiffusion-reaction processes with A+B→B reactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014;90:032136. [PMID: 25314424 DOI: 10.1103/physreve.90.032136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Indexed: 06/04/2023]
36
Harbola U, Kumar N, Lindenberg K. Memory-induced anomalous dynamics in a minimal random walk model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014;90:022136. [PMID: 25215717 DOI: 10.1103/physreve.90.022136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 06/03/2023]
37
Soula H, Caré B, Beslon G, Berry H. Anomalous versus slowed-down Brownian diffusion in the ligand-binding equilibrium. Biophys J 2014;105:2064-73. [PMID: 24209851 DOI: 10.1016/j.bpj.2013.07.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/04/2013] [Accepted: 07/16/2013] [Indexed: 01/06/2023]  Open
38
Ellery AJ, Simpson MJ, McCue SW, Baker RE. Characterizing transport through a crowded environment with different obstacle sizes. J Chem Phys 2014;140:054108. [DOI: 10.1063/1.4864000] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
39
Volpert VA, Kanevsky Y, Nepomnyashchy AA. Propagation failure for a front between stable states in a system with subdiffusion. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014;89:012901. [PMID: 24580291 DOI: 10.1103/physreve.89.012901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Indexed: 06/03/2023]
40
Abad E, Yuste SB, Lindenberg K. Evanescent continuous-time random walks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013;88:062110. [PMID: 24483389 DOI: 10.1103/physreve.88.062110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Indexed: 06/03/2023]
41
Yin H, Wen X, Zhou T. Local accumulation time for the formation of morphogen gradients from a Lévy diffusion process. Phys Biol 2013;10:056012. [DOI: 10.1088/1478-3975/10/5/056012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
42
Iomin A, Méndez V. Reaction-subdiffusion front propagation in a comblike model of spiny dendrites. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013;88:012706. [PMID: 23944491 DOI: 10.1103/physreve.88.012706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/07/2013] [Indexed: 06/02/2023]
43
Bolster D, Benson DA, Meerschaert M, Baeumer B. Mixing-Driven Equilibrium Reactions in Multidimensional Fractional Advection Dispersion Systems. PHYSICA A 2013;392:10.1016/j.physa.2012.12.040. [PMID: 24223468 PMCID: PMC3819229 DOI: 10.1016/j.physa.2012.12.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
44
Fedotov S, Falconer S. Random death process for the regularization of subdiffusive fractional equations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013;87:052139. [PMID: 23767519 DOI: 10.1103/physreve.87.052139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/03/2013] [Indexed: 06/02/2023]
45
Abad E, Yuste SB, Lindenberg K. Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: a fractional equation approach. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012;86:061120. [PMID: 23367906 DOI: 10.1103/physreve.86.061120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Indexed: 06/01/2023]
46
Iomin A, Sokolov IM. Application of hyperbolic scaling for calculation of reaction-subdiffusion front propagation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012;86:022101. [PMID: 23005805 DOI: 10.1103/physreve.86.022101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Indexed: 06/01/2023]
47
Rukolaine SA, Samsonov AM. Delayed uncoupled continuous-time random walks do not provide a model for the telegraph equation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012;85:021150. [PMID: 22463195 DOI: 10.1103/physreve.85.021150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/23/2011] [Indexed: 05/31/2023]
48
Fedotov S, Iomin A, Ryashko L. Non-Markovian models for migration-proliferation dichotomy of cancer cells: anomalous switching and spreading rate. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011;84:061131. [PMID: 22304064 DOI: 10.1103/physreve.84.061131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/01/2011] [Indexed: 05/26/2023]
49
Zhang Y, Papelis C. Particle-tracking simulation of fractional diffusion-reaction processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011;84:066704. [PMID: 22304217 DOI: 10.1103/physreve.84.066704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/25/2011] [Indexed: 05/31/2023]
50
Fedotov S. Subdiffusion, chemotaxis, and anomalous aggregation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011;83:021110. [PMID: 21405821 DOI: 10.1103/physreve.83.021110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/25/2010] [Indexed: 05/30/2023]
PrevPage 1 of 2 12Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA