1
|
Zhang Z, Wang Y, Amarouchene Y, Boisgard R, Kellay H, Würger A, Maali A. Near-Field Probe of Thermal Fluctuations of a Hemispherical Bubble Surface. PHYSICAL REVIEW LETTERS 2021; 126:174503. [PMID: 33988395 DOI: 10.1103/physrevlett.126.174503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
We report measurements of resonant thermal capillary oscillations of a hemispherical liquid gas interface obtained using a half bubble deposited on a solid substrate. The thermal motion of the hemispherical interface is investigated using an atomic force microscope cantilever that probes the amplitude of vibrations of this interface versus frequency. The spectrum of such nanoscale thermal oscillations of the bubble surface presents several resonance peaks and reveals that the contact line of the hemispherical bubble is pinned on the substrate. The analysis of these peaks allows us to measure the surface viscosity of the bubble interface. Minute amounts of impurities are responsible for altering the rheology of the pure water surface.
Collapse
Affiliation(s)
- Z Zhang
- Université de Bordeaux & CNRS, LOMA (UMR 5798), 33405 Talence, France
| | - Y Wang
- School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Y Amarouchene
- Université de Bordeaux & CNRS, LOMA (UMR 5798), 33405 Talence, France
| | - R Boisgard
- Université de Bordeaux & CNRS, LOMA (UMR 5798), 33405 Talence, France
| | - H Kellay
- Université de Bordeaux & CNRS, LOMA (UMR 5798), 33405 Talence, France
| | - A Würger
- Université de Bordeaux & CNRS, LOMA (UMR 5798), 33405 Talence, France
| | - A Maali
- Université de Bordeaux & CNRS, LOMA (UMR 5798), 33405 Talence, France
| |
Collapse
|
2
|
Benet J, Llombart P, Sanz E, MacDowell LG. Structure and fluctuations of the premelted liquid film of ice at the triple point. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1583388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jorge Benet
- Departamento de Química-Física (Unidad Asociada de I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Pablo Llombart
- Departamento de Química-Física (Unidad Asociada de I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Química Física Rocasolano, CSIC, Madrid, Spain
| | - Eduardo Sanz
- Departamento de Química-Física (Unidad Asociada de I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis G. MacDowell
- Departamento de Química-Física (Unidad Asociada de I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
3
|
MacDowell LG, Llombart P, Benet J, Palanco JG, Guerrero-Martinez A. Nanocapillarity and Liquid Bridge-Mediated Force between Colloidal Nanoparticles. ACS OMEGA 2018; 3:112-123. [PMID: 31457880 PMCID: PMC6641340 DOI: 10.1021/acsomega.7b01650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/21/2017] [Indexed: 06/10/2023]
Abstract
In this work, we probe the concept of interface tension for ultrathin adsorbed liquid films on the nanoscale by studying the surface fluctuations of films down to the monolayer. Our results show that the spectrum of film height fluctuations of a liquid-vapor surface may be extended to ultrathin films provided we take into account the interactions of the substrate with the surface. Global fluctuations of the film height are described in terms of disjoining pressure, whereas surface deformations that are proportional to the interface area are accounted for by a film thickness-dependent surface tension. As a proof of concept, we model the capillary forces between colloidal nanoparticles held together by liquid bridges. Our results indicate that the classical equations for capillarity follow very precisely down to the nanoscale provided we account for the film height dependence of the surface tension.
Collapse
Affiliation(s)
- Luis G. MacDowell
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Pablo Llombart
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Jorge Benet
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Jose G. Palanco
- Departamento
de Materiales y Producción Aeroespacial, ETSI Aeronáuticos, Universidad Politécnica de Madrid, Plaza del Cardenal Cisneros 3, 28040 Madrid, Spain
| | - Andrés Guerrero-Martinez
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, Avda. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
4
|
Fernández EM, Chacón E, MacDowell LG, Tarazona P. Mesoscopic Hamiltonian for the fluctuations of adsorbed Lennard-Jones liquid films. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062404. [PMID: 26172722 DOI: 10.1103/physreve.91.062404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 06/04/2023]
Abstract
We use Monte Carlo simulations of a Lennard-Jones fluid adsorbed on a short-range planar wall substrate to study the fluctuations in the thickness of the wetting layer, and we get a quantitative and consistent characterization of their mesoscopic Hamiltonian, H[ξ]. We have observed important finite-size effects, which were hampering the analysis of previous results obtained with smaller systems. The results presented here support an appealing simple functional form for H[ξ], close but not exactly equal to the theoretical nonlocal proposal made on the basis a generic density-functional analysis by Parry and coworkers. We have analyzed systems under different wetting conditions, as a proof of principle for a method that provides a quantitative bridge between the molecular interactions and the phenomenology of wetting films at mesoscopic scales.
Collapse
Affiliation(s)
- Eva M Fernández
- Departamento de Física Fundamental, Universidad Nacional de Educación Distancia, Madrid, Spain and Instituto de Ciencia de Materiales de Madrid, CSIC, 28049, Madrid, Spain
| | - Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049, Madrid, Spain and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autońoma de Madrid, Madrid, 28049, Spain
| | - Luis G MacDowell
- Departamento de Química Física, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Pedro Tarazona
- Departamento de Física Teórica de la Materia Condensada, Condensed Matter Physics Center IFIMAC and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| |
Collapse
|
5
|
Noppel M, Vehkamäki H, Winkler PM, Kulmala M, Wagner PE. Heterogeneous nucleation in multi-component vapor on a partially wettable charged conducting particle. I. Formulation of general equations: electrical surface and line excess quantities. J Chem Phys 2013; 139:134107. [PMID: 24116552 DOI: 10.1063/1.4822046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thermodynamics is applied to formulate general equations for internal energies and grand potential for a system consisting of a dielectric liquid nucleus of a new phase on a charged insoluble conducting sphere within a uniform macroscopic one- or multicomponent mother phase. The currently available model for ion-induced nucleation assumes complete spherical symmetry of the system, implying that the seed ion is immediately surrounded by the condensing liquid from all sides. We take a step further and treat more realistic geometries, where a cap-shaped liquid cluster forms on the surface of the seed particle. To take into account spontaneous polarization of surface layer molecules we introduce the electrical surface and line excess quantities.
Collapse
Affiliation(s)
- M Noppel
- Institute of Physics, University of Tartu, 18 Ülikooli St., 50090 Tartu, Estonia
| | | | | | | | | |
Collapse
|
6
|
Calzolari DCE, Pontoni D, Daillant J, Reichert H. An X-ray chamber for in situ structural studies of solvent-mediated nanoparticle self-assembly. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:306-15. [PMID: 23412488 PMCID: PMC3943544 DOI: 10.1107/s0909049513001143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/11/2013] [Indexed: 05/30/2023]
Abstract
Spontaneous ordering of nanoparticles (NPs) occurring as a consequence of solvent evaporation can yield highly ordered and extended NP superlattices bearing both fundamental scientific interest and potential for technological application. A versatile experimental chamber has been developed allowing (i) controlled in situ deposition of NP solutions on solid substrates, (ii) rate-controlled evaporation of the bulk solvent, and (iii) adsorption/desorption of nano-thick solvent films onto preformed NP assemblies. Within this hermetically sealed chamber all the stages of self-assembly, including macroscopic solution evaporation, NP thin-film formation and its subsequent structural transformation induced by nano-thick solvent films, can be characterized in situ by X-ray scattering techniques. Here, technical design and calibration details are provided, as well as three experimental examples highlighting the chamber's performances and potential. Examples include the controlled adsorption of thin toluene films on flat silicon wafers, the observation of transient accumulation of gold NPs near the toluene-vapour interface, and preliminary data on the structural effects of fast macroscopic solvent evaporation followed by nanoscale solvent adsorption/desorption from a vapour phase. By combining bulk evaporation rate control, fine tuning of the thickness of adsorbed solvent films and in situ X-ray characterization capabilities, this cell enables explorations of both near-to-equilibrium and far-from-equilibrium routes to NP self-assembly.
Collapse
Affiliation(s)
| | - Diego Pontoni
- European Synchrotron Radiation Facility, Beamline ID15, 38043 Grenoble, France
| | - Jean Daillant
- CEA, IRAMIS, LIONS, Batiment 125, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | - Harald Reichert
- European Synchrotron Radiation Facility, Beamline ID15, 38043 Grenoble, France
- Max-Planck-Institut für Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
| |
Collapse
|
7
|
Thomas PJ, Mbufu E, O'Brien P. Thin films of metals, metal chalcogenides and oxides deposited at the water–oil interface using molecular precursors. Chem Commun (Camb) 2013; 49:118-27. [DOI: 10.1039/c2cc37146d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Alexander GG, Cubitt R, Dalgliesh RM, Kinane C, Richardson RM, Zimmermann H. A neutron reflection study of surface enrichment in nematic liquid crystals. Phys Chem Chem Phys 2011; 13:14784-94. [PMID: 21743913 DOI: 10.1039/c0cp02606a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interfacial adsorption properties of several different dopants in cyanobiphenyl liquid crystals have been measured using specular neutron reflection. It was found that a partly fluorinated analogue of 11OCB, called F17, adsorbed strongly at the interface between 5CB and air but it was not adsorbed at the interface between 5CB and a solid substrate treated with cetyl trimethyl ammonium bromide (CTAB). The concentration dependence of the adsorption at the air interface was well described by the Brunauer, Emmett and Teller (BET) model, adapted for solutions rather than the gas phase. The isotherms are determined by two equilibrium constants: K(S) for adsorption of the dopant directly at the interface and K(L) for adsorption onto previously adsorbed dopant. The temperature dependence of K(S) indicated that the adsorption enthalpy is not influenced by the phase of the 5CB and its value of -29 kJmol(-1) is consistent with physical adsorption. The value of K(L) is zero in the isotropic phase but increases rapidly on cooling in the nematic phase suggesting that the F17 is less compatible with nematic than isotropic 5CB. The smallest layer thicknesses (~18 Å) suggest that the F17 molecules are approximately perpendicular to the surface. The other dopants studied were components of the E7 mixture: 8OCB and 5CT. No adsorption was found for 8OCB but 5CT showed adsorption at a CTAB treated solid interface when present in 5CB at the 10% level. In this case, the value of K(S) was much smaller than for F17 but the value of K(L) was such that an exponential concentration profile (predicted by the BET model) was observed with characteristic thickness of ~200 Å. The results demonstrate the potential for very precise control of surface properties in liquid crystal devices by using appropriate dopants.
Collapse
|
9
|
Hellsing MS, Rennie AR, Hughes AV. Adsorption of aerosol-OT to sapphire: lamellar structures studied with neutrons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:4669-4678. [PMID: 21443213 DOI: 10.1021/la1048985] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The adsorption of sodium bis 2-ethylhexyl sulfosuccinate, NaAOT, to a sapphire surface from aqueous solution has been studied by neutron reflection at concentrations above the critical micelle concentration (cmc). Complementary measurements of the bulk structure were made with small-angle neutron scattering and grazing incidence small-angle neutron scattering. At a concentration of about 1% wt (10 × cmc), lamellar phase NaAOT was observed both at the surface and in the bulk. The structure seen at the interface for a solution of 2% wt NaAOT is a 35 ± 2 Å thick bilayer adsorbed to the sapphire surface at maximum packing density, followed by an aligned stack of fluctuating bilayers of thickness 51 ± 2 Å and with an area per molecule of 40 ± 2 Å(2). Each bilayer is separated by a water: at 25 °C, this layer is 148 ± 2 Å. A simple model for the reflectivity from fluctuating layers is presented, and for 2.0% wt NaAOT the fluctuations were found to have an amplitude of 25 ± 5 Å. The temperature sensitivity of the structure at the surface was investigated in the range 15-30 °C. The effect of temperature was pronounced, with the solvent layer becoming thinner and the volume occupied by the NaAOT molecules in a bilayer increasing with temperature. The amplitude of the fluctuations, however, is approximately temperature independent in this range. The adsorption of NaAOT at the sapphire surface resembles that previously found at hydrophilic and hydrophobic silica surfaces. The coexisting bulk lamellar phase has a spacing of layers similar to that observed at the surface. These observations are an indication that the major driving force for adsorption is self-assembly, independent of the chemical nature of the interface.
Collapse
Affiliation(s)
- Maja S Hellsing
- Materials Physics, Department of Physics and Astronomy, Ångström Laboratory, Uppsala University, Box 516, 751 20, Uppsala, Sweden.
| | | | | |
Collapse
|
10
|
Zhukhovitskii DI. Effective surface tension for capillary fluctuations at the vapor-liquid interface. COLLOID JOURNAL 2010. [DOI: 10.1134/s1061933x10020079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Vaknin D, Bu W, Sung J, Jeon Y, Kim D. Thermally excited capillary waves at vapor/liquid interfaces of water-alcohol mixtures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:115105. [PMID: 21693910 DOI: 10.1088/0953-8984/21/11/115105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The density profiles of liquid/vapor interfaces of water-alcohol (methanol, ethanol and propanol) mixtures were studied by surface-sensitive synchrotron x-ray scattering techniques. X-ray reflectivity and diffuse scattering measurements, from the pure and mixed liquids, were analyzed in the framework of capillary wave theory to address the characteristic length scales of the intrinsic roughness and the shortest capillary wavelength (alternatively, the upper wavevector cutoff in capillary wave theory). Our results establish that the intrinsic roughness is dominated by average interatomic distances. The extracted effective upper wavevector cutoff indicates capillary wave theory breaks down at distances of the order of bulk correlation lengths.
Collapse
Affiliation(s)
- David Vaknin
- Ames Laboratory, Iowa State University, Ames, IA 50011, USA. Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
12
|
Pershan PS. X-ray Scattering From Liquid Surfaces: Effect of Resolution. J Phys Chem B 2008; 113:3639-46. [DOI: 10.1021/jp806113n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P. S. Pershan
- SEAS and Department of Physics, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
13
|
Vaknin D, Bu W, Travesset A. Extracting the pair distribution function of liquids and liquid-vapor surfaces by grazing incidence x-ray diffraction mode. J Chem Phys 2008; 129:044504. [PMID: 18681657 DOI: 10.1063/1.2953572] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that the structure factor S(q) of water can be obtained from x-ray synchrotron experiments at grazing angle of incidence (in reflection mode) by using a liquid surface diffractometer. The corrections used to obtain S(q) self-consistently are described. Applying these corrections to scans at different incident beam angles (above the critical angle) collapses the measured intensities into a single master curve, without fitting parameters, which within a scale factor yields S(q). Performing the measurements below the critical angle for total reflectivity yields the structure factor of the top most layers of the water/vapor interface. Our results indicate water restructuring at the vapor/water interface. We also introduce a new approach to extract g(r), the pair distribution function (PDF), by expressing the PDF as a linear sum of error functions whose parameters are refined by applying a nonlinear least square fit method. This approach enables a straightforward determination of the inherent uncertainties in the PDF. Implications of our results to previously measured and theoretical predictions of the PDF are also discussed.
Collapse
Affiliation(s)
- David Vaknin
- Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA.
| | | | | |
Collapse
|
14
|
Schlossman ML, Tikhonov AM. Molecular ordering and phase behavior of surfactants at water-oil interfaces as probed by X-ray surface scattering. Annu Rev Phys Chem 2008; 59:153-77. [PMID: 17988204 DOI: 10.1146/annurev.physchem.59.032607.093822] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Surfactants have their primary utility, both scientific and industrial, at the liquid-liquid interface. We review recent X-ray surface scattering experiments that probe the molecular ordering and phase behavior of surfactants at the water-oil interface. The presence of the oil modifies the interfacial ordering in a manner that cannot be understood simply from analogies with studies of Langmuir monolayers of surfactants at the water-vapor interface or from the traditional view that the solvent is fully mixed with the interfacial surfactants. These studies explored the role of chain flexibility and head group interactions on the ordering of long-chain alkanols and alkanoic acids. Small changes in the surfactant may produce large changes in the interfacial ordering. The interfacial monolayer can be spatially homogeneous or inhomogeneous. Investigators have observed interfacial phase transitions as a function of temperature between homogenous phases, as well as between homogeneous and inhomogeneous phases. Finally, varying the solvent chain length can alter the fundamental character of the phase transitions and lead to the formation of multilayer interfacial structures.
Collapse
Affiliation(s)
- Mark L Schlossman
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| | | |
Collapse
|
15
|
Fukuto M, Gang O, Alvine KJ, Ocko BM, Pershan PS. Wetting of liquid-crystal surfaces and induced smectic layering at a nematic-liquid interface: an x-ray reflectivity study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:031607. [PMID: 18517395 DOI: 10.1103/physreve.77.031607] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/06/2008] [Indexed: 05/26/2023]
Abstract
We report the results of a synchrotron x-ray reflectivity study of bulk liquid-crystal surfaces that are coated by thin wetting films of an immiscible liquid. The liquid-crystal subphase consisted of the nematic or isotropic phase of 4-octyl- 4;{'} -cyanobiphenyl (8CB), and the wetting film was formed by the fluorocarbon perfluoromethylcyclohexane (PFMC), a volatile liquid. The thickness of the wetting film was controlled by the temperature difference DeltaT(micro) between the sample and a reservoir of bulk PFMC, contained within the sealed sample cell. Phase information on the interfacial electron density profiles has been extracted from the interference between the scattering from the PFMC-vapor interface and the surface-induced smectic order of the 8CB subphase. The liquid-crystal side of the nematic-liquid (8CB-PFMC) interface is characterized by a density oscillation whose period corresponds to the smectic layer spacing and whose amplitude decays exponentially toward the underlying nematic subphase. The decay length xi of the smectic amplitude is independent of the PFMC film thickness but increases as the nematic-smectic- A transition temperature T(NA) is approached, in agreement with the longitudinal correlation length xi(parallel) proportional, variant(T-T(NA))(-0.7} for the smectic fluctuations in the bulk nematic. The results indicate that the homeotropic orientation of the 8CB molecules is preferred at the 8CB-PFMC interface and that the observed temperature dependence of the smectic layer growth is consistent with the critical adsorption mechanism. The observed DeltaT(micro) dependence of the PFMC film thickness, L proportional, variant(DeltaT(micro))(-1/3) , implies that PFMC completely wets the 8CB surface and is dominated by the nonretarded dispersion interactions between hydro- and fluorocarbons. The complete wetting behavior of PFMC is nearly independent of the degree of interfacial smectic order in the subphase.
Collapse
Affiliation(s)
- Masafumi Fukuto
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | | | | | | | | |
Collapse
|