1
|
Pietras B. Pulse Shape and Voltage-Dependent Synchronization in Spiking Neuron Networks. Neural Comput 2024; 36:1476-1540. [PMID: 39028958 DOI: 10.1162/neco_a_01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/18/2024] [Indexed: 07/21/2024]
Abstract
Pulse-coupled spiking neural networks are a powerful tool to gain mechanistic insights into how neurons self-organize to produce coherent collective behavior. These networks use simple spiking neuron models, such as the θ-neuron or the quadratic integrate-and-fire (QIF) neuron, that replicate the essential features of real neural dynamics. Interactions between neurons are modeled with infinitely narrow pulses, or spikes, rather than the more complex dynamics of real synapses. To make these networks biologically more plausible, it has been proposed that they must also account for the finite width of the pulses, which can have a significant impact on the network dynamics. However, the derivation and interpretation of these pulses are contradictory, and the impact of the pulse shape on the network dynamics is largely unexplored. Here, I take a comprehensive approach to pulse coupling in networks of QIF and θ-neurons. I argue that narrow pulses activate voltage-dependent synaptic conductances and show how to implement them in QIF neurons such that their effect can last through the phase after the spike. Using an exact low-dimensional description for networks of globally coupled spiking neurons, I prove for instantaneous interactions that collective oscillations emerge due to an effective coupling through the mean voltage. I analyze the impact of the pulse shape by means of a family of smooth pulse functions with arbitrary finite width and symmetric or asymmetric shapes. For symmetric pulses, the resulting voltage coupling is not very effective in synchronizing neurons, but pulses that are slightly skewed to the phase after the spike readily generate collective oscillations. The results unveil a voltage-dependent spike synchronization mechanism at the heart of emergent collective behavior, which is facilitated by pulses of finite width and complementary to traditional synaptic transmission in spiking neuron networks.
Collapse
Affiliation(s)
- Bastian Pietras
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018, Barcelona, Spain
| |
Collapse
|
2
|
Pietras B, Cestnik R, Pikovsky A. Exact finite-dimensional description for networks of globally coupled spiking neurons. Phys Rev E 2023; 107:024315. [PMID: 36932479 DOI: 10.1103/physreve.107.024315] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
We consider large networks of globally coupled spiking neurons and derive an exact low-dimensional description of their collective dynamics in the thermodynamic limit. Individual neurons are described by the Ermentrout-Kopell canonical model that can be excitable or tonically spiking and interact with other neurons via pulses. Utilizing the equivalence of the quadratic integrate-and-fire and the theta-neuron formulations, we first derive the dynamical equations in terms of the Kuramoto-Daido order parameters (Fourier modes of the phase distribution) and relate them to two biophysically relevant macroscopic observables, the firing rate and the mean voltage. For neurons driven by Cauchy white noise or for Cauchy-Lorentz distributed input currents, we adapt the results by Cestnik and Pikovsky [Chaos 32, 113126 (2022)1054-150010.1063/5.0106171] and show that for arbitrary initial conditions the collective dynamics reduces to six dimensions. We also prove that in this case the dynamics asymptotically converges to a two-dimensional invariant manifold first discovered by Ott and Antonsen. For identical, noise-free neurons, the dynamics reduces to three dimensions, becoming equivalent to the Watanabe-Strogatz description. We illustrate the exact six-dimensional dynamics outside the invariant manifold by calculating nontrivial basins of different asymptotic regimes in a bistable situation.
Collapse
Affiliation(s)
- Bastian Pietras
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Tànger 122-140, 08018 Barcelona, Spain
| | - Rok Cestnik
- Department of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Arkady Pikovsky
- Department of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
3
|
Omel'chenko O, Laing CR. Collective states in a ring network of theta neurons. Proc Math Phys Eng Sci 2022; 478:20210817. [PMID: 35280327 PMCID: PMC8908473 DOI: 10.1098/rspa.2021.0817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
We consider a ring network of theta neurons with non-local homogeneous coupling. We analyse the corresponding continuum evolution equation, analytically describing all possible steady states and their stability. By considering a number of different parameter sets, we determine the typical bifurcation scenarios of the network, and put on a rigorous footing some previously observed numerical results.
Collapse
Affiliation(s)
- Oleh Omel'chenko
- University of Potsdam, Institute of Physics and Astronomy, Karl-Liebknecht-Str. 24/25, Potsdam 14476, Germany
| | - Carlo R Laing
- School of Natural and Computational Sciences, Massey University, Private Bag 102-904 NSMC, Auckland, New Zealand
| |
Collapse
|
4
|
Laing CR. Chimeras with uniformly distributed heterogeneity: Two coupled populations. Phys Rev E 2022; 105:024306. [PMID: 35291147 DOI: 10.1103/physreve.105.024306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Chimeras occur in networks of two coupled populations of oscillators when the oscillators in one population synchronize while those in the other are asynchronous. We consider chimeras of this form in networks of planar oscillators for which one parameter associated with the dynamics of an oscillator is randomly chosen from a uniform distribution. A generalization of the previous approach [Laing, Phys. Rev. E 100, 042211 (2019)2470-004510.1103/PhysRevE.100.042211], which dealt with identical oscillators, is used to investigate the existence and stability of chimeras for these heterogeneous networks in the limit of an infinite number of oscillators. In all cases, making the oscillators more heterogeneous destroys the stable chimera in a saddle-node bifurcation. The results help us understand the robustness of chimeras in networks of general oscillators to heterogeneity.
Collapse
Affiliation(s)
- Carlo R Laing
- School of Natural and Computational Sciences, Massey University, Private Bag 102-904 North Shore Mail Centre, Auckland, New Zealand
| |
Collapse
|
5
|
Clusella P, Pietras B, Montbrió E. Kuramoto model for populations of quadratic integrate-and-fire neurons with chemical and electrical coupling. CHAOS (WOODBURY, N.Y.) 2022; 32:013105. [PMID: 35105122 DOI: 10.1063/5.0075285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
We derive the Kuramoto model (KM) corresponding to a population of weakly coupled, nearly identical quadratic integrate-and-fire (QIF) neurons with both electrical and chemical coupling. The ratio of chemical to electrical coupling determines the phase lag of the characteristic sine coupling function of the KM and critically determines the synchronization properties of the network. We apply our results to uncover the presence of chimera states in two coupled populations of identical QIF neurons. We find that the presence of both electrical and chemical coupling is a necessary condition for chimera states to exist. Finally, we numerically demonstrate that chimera states gradually disappear as coupling strengths cease to be weak.
Collapse
Affiliation(s)
- Pau Clusella
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Bastian Pietras
- Institute of Mathematics, Technical University Berlin, 10623 Berlin, Germany
| | - Ernest Montbrió
- Neuronal Dynamics Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
| |
Collapse
|
6
|
Laing CR. Effects of degree distributions in random networks of type-I neurons. Phys Rev E 2021; 103:052305. [PMID: 34134197 DOI: 10.1103/physreve.103.052305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 11/07/2022]
Abstract
We consider large networks of theta neurons and use the Ott-Antonsen ansatz to derive degree-based mean-field equations governing the expected dynamics of the networks. Assuming random connectivity, we investigate the effects of varying the widths of the in- and out-degree distributions on the dynamics of excitatory or inhibitory synaptically coupled networks and gap junction coupled networks. For synaptically coupled networks, the dynamics are independent of the out-degree distribution. Broadening the in-degree distribution destroys oscillations in inhibitory networks and decreases the range of bistability in excitatory networks. For gap junction coupled neurons, broadening the degree distribution varies the values of parameters at which there is an onset of collective oscillations. Many of the results are shown to also occur in networks of more realistic neurons.
Collapse
Affiliation(s)
- Carlo R Laing
- School of Natural and Computational Sciences, Massey University, Private Bag 102-904 NSMC, Auckland, New Zealand
| |
Collapse
|
7
|
Pietras B, Devalle F, Roxin A, Daffertshofer A, Montbrió E. Exact firing rate model reveals the differential effects of chemical versus electrical synapses in spiking networks. Phys Rev E 2020; 100:042412. [PMID: 31771022 DOI: 10.1103/physreve.100.042412] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 01/09/2023]
Abstract
Chemical and electrical synapses shape the dynamics of neuronal networks. Numerous theoretical studies have investigated how each of these types of synapses contributes to the generation of neuronal oscillations, but their combined effect is less understood. This limitation is further magnified by the impossibility of traditional neuronal mean-field models-also known as firing rate models or firing rate equations-to account for electrical synapses. Here, we introduce a firing rate model that exactly describes the mean-field dynamics of heterogeneous populations of quadratic integrate-and-fire (QIF) neurons with both chemical and electrical synapses. The mathematical analysis of the firing rate model reveals a well-established bifurcation scenario for networks with chemical synapses, characterized by a codimension-2 cusp point and persistent states for strong recurrent excitatory coupling. The inclusion of electrical coupling generally implies neuronal synchrony by virtue of a supercritical Hopf bifurcation. This transforms the cusp scenario into a bifurcation scenario characterized by three codimension-2 points (cusp, Takens-Bogdanov, and saddle-node separatrix loop), which greatly reduces the possibility for persistent states. This is generic for heterogeneous QIF networks with both chemical and electrical couplings. Our results agree with several numerical studies on the dynamics of large networks of heterogeneous spiking neurons with electrical and chemical couplings.
Collapse
Affiliation(s)
- Bastian Pietras
- Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute of Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, van der Boechorststraat 9, Amsterdam 1081 BT, The Netherlands.,Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom.,Institute of Mathematics, Technical University Berlin, 10623 Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Federico Devalle
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom.,Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Alex Roxin
- Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona), Spain.,Barcelona Graduate School of Mathematics, 08193 Barcelona, Spain
| | - Andreas Daffertshofer
- Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute of Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, van der Boechorststraat 9, Amsterdam 1081 BT, The Netherlands
| | - Ernest Montbrió
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
8
|
González-Ramírez LR, Mauro AJ. Investigating the role of gap junctions in seizure wave propagation. BIOLOGICAL CYBERNETICS 2019; 113:561-577. [PMID: 31696304 DOI: 10.1007/s00422-019-00809-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
The effect of gap junctions as well as the biological mechanisms behind seizure wave propagation is not completely understood. In this work, we use a simple neural field model to study the possible influence of gap junctions specifically on cortical wave propagation that has been observed in vivo preceding seizure termination. We consider a voltage-based neural field model consisting of an excitatory and an inhibitory population as well as both chemical and gap junction-like synapses. We are able to approximate important properties of cortical wave propagation previously observed in vivo before seizure termination. This model adds support to existing evidence from models and clinical data suggesting a key role of gap junctions in seizure wave propagation. In particular, we found that in this model gap junction-like connectivity determines the propagation of one-bump or two-bump traveling wave solutions with features consistent with the clinical data. For sufficiently increased gap junction connectivity, wave solutions cease to exist. Moreover, gap junction connectivity needs to be sufficiently low or moderate to permit the existence of linearly stable solutions of interest.
Collapse
Affiliation(s)
- Laura R González-Ramírez
- Departamento de Formación Básica Disciplinaria, Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo, San Agustín Tlaxiaca, Hidalgo, Mexico.
| | - Ava J Mauro
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
9
|
Laing CR. Dynamics and stability of chimera states in two coupled populations of oscillators. Phys Rev E 2019; 100:042211. [PMID: 31770875 DOI: 10.1103/physreve.100.042211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 06/10/2023]
Abstract
We consider networks formed from two populations of identical oscillators, with uniform strength all-to-all coupling within populations and also between populations with a different strength. Such systems are known to support chimera states in which oscillators within one population are perfectly synchronized while in the other the oscillators are incoherent and have a different mean frequency from those in the synchronous population. Assuming that the oscillators in the incoherent population always lie on a closed smooth curve C, we derive and analyze the dynamics of the shape of C and the probability density on C for four different types of oscillators. We put some previously derived results on a more rigorous footing and analyze two new systems.
Collapse
Affiliation(s)
- Carlo R Laing
- School of Natural and Computational Sciences, Massey University, Auckland 0745, New Zealand
| |
Collapse
|
10
|
Uzuntarla M, Torres JJ, Calim A, Barreto E. Synchronization-induced spike termination in networks of bistable neurons. Neural Netw 2019; 110:131-140. [DOI: 10.1016/j.neunet.2018.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
|
11
|
Ashwin P, Coombes S, Nicks R. Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2016; 6:2. [PMID: 26739133 PMCID: PMC4703605 DOI: 10.1186/s13408-015-0033-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/30/2015] [Indexed: 05/20/2023]
Abstract
The tools of weakly coupled phase oscillator theory have had a profound impact on the neuroscience community, providing insight into a variety of network behaviours ranging from central pattern generation to synchronisation, as well as predicting novel network states such as chimeras. However, there are many instances where this theory is expected to break down, say in the presence of strong coupling, or must be carefully interpreted, as in the presence of stochastic forcing. There are also surprises in the dynamical complexity of the attractors that can robustly appear-for example, heteroclinic network attractors. In this review we present a set of mathematical tools that are suitable for addressing the dynamics of oscillatory neural networks, broadening from a standard phase oscillator perspective to provide a practical framework for further successful applications of mathematics to understanding network dynamics in neuroscience.
Collapse
Affiliation(s)
- Peter Ashwin
- Centre for Systems Dynamics and Control, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, Exeter, EX4 4QF, UK.
| | - Stephen Coombes
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Rachel Nicks
- School of Mathematics, University of Birmingham, Watson Building, Birmingham, B15 2TT, UK.
| |
Collapse
|
12
|
Laing CR. Travelling waves in arrays of delay-coupled phase oscillators. CHAOS (WOODBURY, N.Y.) 2016; 26:094802. [PMID: 27781474 DOI: 10.1063/1.4953663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We consider the effects of several forms of delays on the existence and stability of travelling waves in non-locally coupled networks of Kuramoto-type phase oscillators and theta neurons. By passing to the continuum limit and using the Ott/Antonsen ansatz, we derive evolution equations for a spatially dependent order parameter. For phase oscillator networks, the travelling waves take the form of uniformly twisted waves, and these can often be characterised analytically. For networks of theta neurons, the waves are studied numerically.
Collapse
Affiliation(s)
- Carlo R Laing
- Institute of Natural and Mathematical Sciences, Massey University, Private Bag 102-904 NSMC, Auckland, New Zealand
| |
Collapse
|
13
|
Abstract
We consider a network of coupled excitatory and inhibitory theta neurons which is capable of supporting stable spatially-localized “bump” solutions. We randomly add long-range and simultaneously remove short-range connections within the network to form a small-world network and investigate the effects of this rewiring on the existence and stability of the bump solution. We consider two limits in which continuum equations can be derived; bump solutions are fixed points of these equations. We can thus use standard numerical bifurcation analysis to determine the stability of these bumps and to follow them as parameters (such as rewiring probabilities) are varied. We find that under some rewiring schemes bumps are quite robust, whereas in other schemes they can become unstable via Hopf bifurcation or even be destroyed in saddle-node bifurcations.
Collapse
Affiliation(s)
- Carlo R Laing
- Institute of Natural and Mathematical Sciences, Massey University Auckland, New Zealand
| |
Collapse
|
14
|
Cho MW, Choi M. Spontaneous organization of the cortical structure through endogenous neural firing and gap junction transmission. Neural Netw 2012; 31:46-52. [DOI: 10.1016/j.neunet.2012.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/15/2012] [Accepted: 03/02/2012] [Indexed: 11/15/2022]
|
15
|
Abstract
The dependence of the dynamics of pulse-coupled neural networks on random rewiring of excitatory and inhibitory connections is examined. When both excitatory and inhibitory connections are rewired, periodic synchronization emerges with a Hopf-like bifurcation and a subsequent period-doubling bifurcation; chaotic synchronization is also observed. When only excitatory connections are rewired, periodic synchronization emerges with a saddle node-like bifurcation, and chaotic synchronization is also observed. This result suggests that randomness in the system does not necessarily contaminate the system, and sometimes it even introduces rich dynamics to the system such as chaos.
Collapse
Affiliation(s)
- Takashi Kanamaru
- Department of Innovative Mechanical Engineering, Kogakuin University, Hachioji-city, Tokyo 193-0802, Japan.
| | | |
Collapse
|
16
|
Smeal RM, Ermentrout GB, White JA. Phase-response curves and synchronized neural networks. Philos Trans R Soc Lond B Biol Sci 2010; 365:2407-22. [PMID: 20603361 DOI: 10.1098/rstb.2009.0292] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We review the principal assumptions underlying the application of phase-response curves (PRCs) to synchronization in neuronal networks. The PRC measures how much a given synaptic input perturbs spike timing in a neural oscillator. Among other applications, PRCs make explicit predictions about whether a given network of interconnected neurons will synchronize, as is often observed in cortical structures. Regarding the assumptions of the PRC theory, we conclude: (i) The assumption of noise-tolerant cellular oscillations at or near the network frequency holds in some but not all cases. (ii) Reduced models for PRC-based analysis can be formally related to more realistic models. (iii) Spike-rate adaptation limits PRC-based analysis but does not invalidate it. (iv) The dependence of PRCs on synaptic location emphasizes the importance of improving methods of synaptic stimulation. (v) New methods can distinguish between oscillations that derive from mutual connections and those arising from common drive. (vi) It is helpful to assume linear summation of effects of synaptic inputs; experiments with trains of inputs call this assumption into question. (vii) Relatively subtle changes in network structure can invalidate PRC-based predictions. (viii) Heterogeneity in the preferred frequencies of component neurons does not invalidate PRC analysis, but can annihilate synchronous activity.
Collapse
Affiliation(s)
- Roy M Smeal
- Department of Bioengineering, Brain Institute, University of Utah, Salt Lake City, 20 South 2030 East, UT 84112, USA.
| | | | | |
Collapse
|
17
|
Kanamaru T, Aihara K. Roles of inhibitory neurons in rewiring-induced synchronization in pulse-coupled neural networks. Neural Comput 2010; 22:1383-98. [PMID: 20100075 DOI: 10.1162/neco.2010.04-09-997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The roles of inhibitory neurons in synchronous firing are examined in a network of excitatory and inhibitory neurons with Watts and Strogatz's rewiring. By examining the persistence of the synchronous firing that exists in the random network, it was found that there is a probability of rewiring at which a transition between the synchronous state and the asynchronous state takes place, and the dynamics of the inhibitory neurons play an important role in determining this probability.
Collapse
Affiliation(s)
- Takashi Kanamaru
- Department of Innovative Mechanical Engineering, Faculty of Global Engineering, Kogakuin University, Tokyo, Japan.
| | | |
Collapse
|
18
|
Donnell P, Baigent SA, Banaji M. Monotone dynamics of two cells dynamically coupled by a voltage-dependent gap junction. J Theor Biol 2009; 261:120-5. [PMID: 19627994 DOI: 10.1016/j.jtbi.2009.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 11/17/2022]
Abstract
We introduce and analyse a simple model for two non-excitable cells that are dynamically coupled by a gap junction, a plaque of aqueous channels that electrically couple the cells. The gap junction channels have a low and high conductance state, and the transition rates between these states are voltage-dependent. We show that the number and stability of steady states of the system has a simple relationship with the determinant of the Jacobian matrix. For the case that channel opening rates decrease with increasing trans-junctional voltage, and closing rates increase with increasing trans-junctional voltage, we show that the system is monotone, with tridiagonal Jacobian matrix, and hence every initial condition evolves to a steady state, but that there may be multiple steady states.
Collapse
Affiliation(s)
- Peter Donnell
- Department of Medical Physics and Bioengineering, UCL, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
19
|
Kanamaru T, Aihara K. Stochastic synchrony of chaos in a pulse-coupled neural network with both chemical and electrical synapses among inhibitory neurons. Neural Comput 2008; 20:1951-72. [PMID: 18386979 DOI: 10.1162/neco.2008.05-07-516] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The synchronous firing of neurons in a pulse-coupled neural network composed of excitatory and inhibitory neurons is analyzed. The neurons are connected by both chemical synapses and electrical synapses among the inhibitory neurons. When electrical synapses are introduced, periodically synchronized firing as well as chaotically synchronized firing is widely observed. Moreover, we find stochastic synchrony where the ensemble-averaged dynamics shows synchronization in the network but each neuron has a low firing rate and the firing of the neurons seems to be stochastic. Stochastic synchrony of chaos corresponding to a chaotic attractor is also found.
Collapse
Affiliation(s)
- Takashi Kanamaru
- Department of Innovative Mechanical Engineering, Faculty of Global Engineering, Kogakuin University, Hachioji-city, Tokyo 193-0802, Japan.
| | | |
Collapse
|
20
|
Steyn-Ross ML, Steyn-Ross DA, Wilson MT, Sleigh JW. Gap junctions mediate large-scale Turing structures in a mean-field cortex driven by subcortical noise. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:011916. [PMID: 17677503 DOI: 10.1103/physreve.76.011916] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/18/2007] [Indexed: 05/16/2023]
Abstract
One of the grand puzzles in neuroscience is establishing the link between cognition and the disparate patterns of spontaneous and task-induced brain activity that can be measured clinically using a wide range of detection modalities such as scalp electrodes and imaging tomography. High-level brain function is not a single-neuron property, yet emerges as a cooperative phenomenon of multiply-interacting populations of neurons. Therefore a fruitful modeling approach is to picture the cerebral cortex as a continuum characterized by parameters that have been averaged over a small volume of cortical tissue. Such mean-field cortical models have been used to investigate gross patterns of brain behavior such as anesthesia, the cycles of natural sleep, memory and erasure in slow-wave sleep, and epilepsy. There is persuasive and accumulating evidence that direct gap-junction connections between inhibitory neurons promote synchronous oscillatory behavior both locally and across distances of some centimeters, but, to date, continuum models have ignored gap-junction connectivity. In this paper we employ simple mean-field arguments to derive an expression for D2, the diffusive coupling strength arising from gap-junction connections between inhibitory neurons. Using recent neurophysiological measurements reported by Fukuda [J. Neurosci. 26, 3434 (2006)], we estimate an upper limit of D2 approximately 0.6cm2. We apply a linear stability analysis to a standard mean-field cortical model, augmented with gap-junction diffusion, and find this value for the diffusive coupling strength to be close to the critical value required to destabilize the homogeneous steady state. Computer simulations demonstrate that larger values of D2 cause the noise-driven model cortex to spontaneously crystalize into random mazelike Turing structures: centimeter-scale spatial patterns in which regions of high-firing activity are intermixed with regions of low-firing activity. These structures are consistent with the spatial variations in brain activity patterns detected with the BOLD (blood oxygen-level-dependent) signal detected with magnetic resonance imaging, and may provide a natural substrate for synchronous gamma-band rhythms observed across separated EEG (electroencephalogram) electrodes.
Collapse
Affiliation(s)
- Moira L Steyn-Ross
- Department of Engineering, Private Bag 3105, University of Waikato, Hamilton 3240, New Zealand.
| | | | | | | |
Collapse
|