1
|
Xu X, Tang T, Gu M. Structural transitions in two-dimensional modulated systems under triangular confinement. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:72. [PMID: 36070024 DOI: 10.1140/epje/s10189-022-00229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
We study numerically the structural transitions of two-dimensional systems of classic particles with competing interactions under a triangular confinement with two different types of soft-wall potentials. We observe a variety of novel confinement-induced equilibrium configurations as a function of particle density and confinement steepness for each considered confinement potential. The specific role played by the confining potentials on the ordering of the particle clusters is revealed. These findings allow us to control the self-organization of modulated systems through using external confinements.
Collapse
Affiliation(s)
- Xibin Xu
- Collaborative Innovation Center of Advanced Microstructures, School of physics, Nanjing University, Nanjing, China.
| | - Tao Tang
- Collaborative Innovation Center of Advanced Microstructures, School of physics, Nanjing University, Nanjing, China
| | - Min Gu
- Collaborative Innovation Center of Advanced Microstructures, School of physics, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Xu XB, Tang T, Wang ZH, Xu XN, Fang GY, Gu M. Nonequilibrium pattern formation in circularly confined two-dimensional systems with competing interactions. Phys Rev E 2021; 103:012604. [PMID: 33601588 DOI: 10.1103/physreve.103.012604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/19/2020] [Indexed: 11/07/2022]
Abstract
We numerically investigate the nonequilibrium behaviors of classic particles with competing interactions confined in a two-dimensional logarithmic trap. We reveal a quench-induced surprising dynamics exhibiting rich dynamic patterns depending upon confinement strength and trap size, which is attributed to the time-dependent competition between interparticle repulsions and attractions under a circular confinement. Moreover, in the collectively diffusive motions of the particles, we find that the emergence of dynamic structure transformation coincides with a diffusive mode transition from superdiffusion to subdiffusion. These findings are likely useful in understanding the pattern selection and evolution in various chemical and biological systems in addition to modulated systems, and add a new route to tailoring the morphology of pattern-forming systems.
Collapse
Affiliation(s)
- X B Xu
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - T Tang
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - Z H Wang
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - X N Xu
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - G Y Fang
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - M Gu
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
3
|
Yang F, Kong W, Liu SF, Wang CZ. Structure of a two-dimensional superparamagnetic system in a quadratic trap. Phys Rev E 2020; 102:043213. [PMID: 33212587 DOI: 10.1103/physreve.102.043213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Ground-state structures of a two-dimensional (2D) system composed of superparamagnetic charged particles are investigated by means of molecular dynamics simulation. The charged particles trapped in a quadratic potential interact with each other via the repulsive, attractive, and magnetic dipole-dipole forces. Simulations are performed within two regimes: a one-component system and a two-component system where the charged particles have the identical charge-to-mass ratio. The effects of magnetic dipole-dipole interaction, mixing ratio of the two species and confinement frequency on the ground-state structures are discussed. It is found that as the strength of the magnetic dipole increases, the charged particles tend to self-organize into chainlike structures. The two species particles exhibit different structural features, depending on the competition of electrostatic repulsive interaction, magnetic dipole-dipole interaction and confinement force. The potential lanes are observed through analyzing the global potential of the magnetic particles, which guide the unmagnetic particles aligning themselves in the direction of the potential lanes.
Collapse
Affiliation(s)
- F Yang
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - W Kong
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - S F Liu
- School of Physics, Nankai University, Tianjin 300071, China
| | - C Z Wang
- School of Physics, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Schwabe M, Graves DB. Simulating the dynamics of complex plasmas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:023101. [PMID: 24032946 DOI: 10.1103/physreve.88.023101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Indexed: 06/02/2023]
Abstract
Complex plasmas are low-temperature plasmas that contain micrometer-size particles in addition to the neutral gas particles and the ions and electrons that make up the plasma. The microparticles interact strongly and display a wealth of collective effects. Here we report on linked numerical simulations that reproduce many of the experimental results of complex plasmas. We model a capacitively coupled plasma with a fluid code written for the commercial package comsol. The output of this model is used to calculate forces on microparticles. The microparticles are modeled using the molecular dynamics package lammps, which we extended to include the forces from the plasma. Using this method, we are able to reproduce void formation, the separation of particles of different sizes into layers, lane formation, vortex formation, and other effects.
Collapse
Affiliation(s)
- M Schwabe
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA and Max Planck Institute for Extraterrestrial Physics, P.O. Box 1312, Giessenbachstraße, 85741 Garching, Germany
| | | |
Collapse
|
5
|
Ferreira WP, Farias GA, Peeters FM. A two-component mixture of charged particles confined in a channel: melting. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:285103. [PMID: 21399292 DOI: 10.1088/0953-8984/22/28/285103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The melting of a binary system of charged particles confined in a quasi-one-dimensional parabolic channel is studied through Monte Carlo simulations. At zero temperature the particles are ordered in parallel chains. The melting is anisotropic and different melting temperatures are obtained according to the spatial direction, and the different kinds of particles present in the system. Melting is very different for the single-, two- and four-chain configurations. A temperature induced structural phase transition is found between two different four-chain ordered states which is absent in the mono-disperse system. In the mixed regime, where the two kinds of particles are only slightly different, melting is almost isotropic and a thermally induced homogeneous distribution of the distinct kinds of charges is observed.
Collapse
Affiliation(s)
- W P Ferreira
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil.
| | | | | |
Collapse
|
6
|
Hu Z, Chen Y, Huang F, Shi GF, Zheng J, Yu MY. Sheath structure and formation of dust voids in cylindrical plasma discharges. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:056401. [PMID: 20866338 DOI: 10.1103/physreve.81.056401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Indexed: 05/29/2023]
Abstract
Using a self-consistent two-dimensional fluid model the structure of the plasma sheath in a cylindrical system is investigated. The results show that there is a bumping potential in the central axis resulting in the larger outward directing ion drag force with respect to the opposite electric field force. And the process of the formation of dust voids is studied in the sheath by molecular-dynamics simulation.
Collapse
Affiliation(s)
- Zuquan Hu
- Key Laboratory of Basic Plasma Physics, Chinese Academy of Sciences, and Department of Modern Physics, University of Science and Technology of China, 230026 Hefei, China
| | | | | | | | | | | |
Collapse
|
7
|
Liu YH, Chew LY, Yu MY. Self-assembly of complex structures in a two-dimensional system with competing interaction forces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:066405. [PMID: 19256960 DOI: 10.1103/physreve.78.066405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Indexed: 05/27/2023]
Abstract
Self-assembly of minimum-energy configurations of a two-dimensional system consisting of charged particles confined in a quadratic trap and interacting through competing repulsive and attractive interparticle forces is studied by means of molecular dynamics simulation. It is shown that complex configurations, including concentric shells separated by bandlike voids, connected shells with multiple regularly arranged voids, as well as small clusters of particles organized into crystal- or liquidlike structures, can exist. With increase of the particle number, a larger variety of structural patterns becomes possible. The results here are useful for a better understanding of pattern formation in two-dimensional systems, as well as in the design of specific structures for technological applications.
Collapse
Affiliation(s)
- Y H Liu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | | | | |
Collapse
|