1
|
Li J, Wang X, Li C, Zhang B. Replicator dynamics on heterogeneous networks. J Math Biol 2025; 90:16. [PMID: 39786612 DOI: 10.1007/s00285-024-02177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025]
Abstract
Networked evolutionary game theory is a well-established framework for modeling the evolution of social behavior in structured populations. Most of the existing studies in this field have focused on 2-strategy games on heterogeneous networks or n-strategy games on regular networks. In this paper, we consider n-strategy games on arbitrary networks under the pairwise comparison updating rule. We show that under the limit of weak selection, the short-run behavior of the stochastic evolutionary process can be approximated by replicator equations with a transformed payoff matrix that involves both the average value and the variance of the degree distribution. In particular, strongly heterogeneous networks can facilitate the evolution of the payoff-dominant strategy. We then apply our results to analyze the evolutionarily stable strategies in an n-strategy minimum-effort game and two variants of the prisoner's dilemma game. We show that the cooperative equilibrium becomes evolutionarily stable when the average degree of the network is low and the variance of the degree distribution is high. Agent-based simulations on quasi-regular, exponential, and scale-free networks confirm that the dynamic behaviors of the stochastic evolutionary process can be well approximated by the trajectories of the replicator equations.
Collapse
Affiliation(s)
- Junjie Li
- Laboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical Sciences, Beijing Normal University, Beijing, People's Republic of China
| | - Xiaomin Wang
- Laboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical Sciences, Beijing Normal University, Beijing, People's Republic of China
| | - Cong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, People's Republic of China.
| | - Boyu Zhang
- Laboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical Sciences, Beijing Normal University, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Guo G, Zhang Z, Zhang H, Bearup D, Liao J. Contrasting effects of dispersal network heterogeneity on ecosystem stability in rock-paper-scissors games. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1068830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intransitive competition, typically represented by the classic rock-paper-scissors game, provides an endogenous mechanism promoting species coexistence. As well known, species dispersal and interaction in nature might occur on complex patch networks, with species interacting in diverse ways. However, the effects of different interaction modes, combined with spatial heterogeneity in patch connectivities, have not been well integrated into our general understanding of how stable coexistence emerges in cyclic competition. We thus incorporate network heterogeneity into the classic rock-paper-scissors game, in order to compare ecosystem stability under two typical modes of interaction: species compete to fill empty sites, and species seize each other’s colony sites. On lattice-structured regular networks, the two interaction modes produce similar stability patterns through forming conspecific clusters to reduce interspecific competition. However, for heterogeneous networks, the interaction modes have contrasting effects on ecosystem stability. Specifically, if species compete for colony sites, increasing network heterogeneity stabilizes competitive dynamics. When species compete to fill empty sites, an increase in network heterogeneity leads to larger population fluctuations and therefore a higher risk of stochastic extinctions, in stark contrast to current knowledge. Our findings strongly suggest that particular attention should be devoted to testing which mode of interaction is more appropriate for modeling a given system.
Collapse
|
3
|
Kundu P, MacLaren NG, Kori H, Masuda N. Mean-field theory for double-well systems on degree-heterogeneous networks. Proc Math Phys Eng Sci 2022. [DOI: 10.1098/rspa.2022.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many complex dynamical systems in the real world, including ecological, climate, financial and power-grid systems, often show critical transitions, or tipping points, in which the system’s dynamics suddenly transit into a qualitatively different state. In mathematical models, tipping points happen as a control parameter gradually changes and crosses a certain threshold. Tipping elements in such systems may interact with each other as a network, and understanding the behaviour of interacting tipping elements is a challenge because of the high dimensionality originating from the network. Here, we develop a degree-based mean-field theory for a prototypical double-well system coupled on a network with the aim of understanding coupled tipping dynamics with a low-dimensional description. The method approximates both the onset of the tipping point and the position of equilibria with a reasonable accuracy. Based on the developed theory and numerical simulations, we also provide evidence for multistage tipping point transitions in networks of double-well systems.
Collapse
Affiliation(s)
- Prosenjit Kundu
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260-2900, USA
| | - Neil G. MacLaren
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260-2900, USA
| | - Hiroshi Kori
- Department of Complexity Science and Engineering, The University of Tokyo, Chiba 277-8561, Japan
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260-2900, USA
- Computational and Data-Enabled Science and Engineering Program, State University of New York at Buffalo, Buffalo, NY 14260-5030, USA
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
4
|
Bassler KE, Frey E, Zia RKP. Coevolution of nodes and links: Diversity-driven coexistence in cyclic competition of three species. Phys Rev E 2019; 99:022309. [PMID: 30934283 DOI: 10.1103/physreve.99.022309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 06/09/2023]
Abstract
When three species compete cyclically in a well-mixed, stochastic system of N individuals, extinction is known to typically occur at times scaling as the system size N. This happens, for example, in rock-paper-scissors games or conserved Lotka-Volterra models in which every pair of individuals can interact on a complete graph. Here we show that if the competing individuals also have a "social temperament" to be either introverted or extroverted, leading them to cut or add links, respectively, then long-living states in which all species coexist can occur. These nonequilibrium quasisteady states only occur when both introverts and extroverts are present, thus showing that diversity can lead to stability in complex systems. In this case, it enables a subtle balance between species competition and network dynamics to be maintained.
Collapse
Affiliation(s)
- Kevin E Bassler
- Department of Physics, University of Houston, Houston, Texas 77204-5005, USA; Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5002, USA; and Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, Dresden D-01187, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for Nanoscience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| | - R K P Zia
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, Dresden D-01187, Germany and Center for Soft Matter and Biological Physics, Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
5
|
Nagatani T, Ichinose G, Tainaka KI. Metapopulation dynamics in the rock-paper-scissors game with mutation: Effects of time-varying migration paths. J Theor Biol 2019; 462:425-431. [DOI: 10.1016/j.jtbi.2018.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
|
6
|
Metapopulation model of rock-scissors-paper game with subpopulation-specific victory rates stabilized by heterogeneity. J Theor Biol 2018; 458:103-110. [PMID: 30213665 DOI: 10.1016/j.jtbi.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022]
Abstract
Recently, metapopulation models for rock-paper-scissors games have been presented. Each subpopulation is represented by a node on a graph. An individual is either rock (R), scissors (S) or paper (P); it randomly migrates among subpopulations. In the present paper, we assume victory rates differ in different subpopulations. To investigate the dynamic state of each subpopulation (node), we numerically obtain the solutions of reaction-diffusion equations on the graphs with two and three nodes. In the case of homogeneous victory rates, we find each subpopulation has a periodic solution with neutral stability. However, when victory rates between subpopulations are heterogeneous, the solution approaches stable focuses. The heterogeneity of victory rates promotes the coexistence of species.
Collapse
|
7
|
Heterogeneous network promotes species coexistence: metapopulation model for rock-paper-scissors game. Sci Rep 2018; 8:7094. [PMID: 29728573 PMCID: PMC5935761 DOI: 10.1038/s41598-018-25353-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/19/2018] [Indexed: 11/08/2022] Open
Abstract
Understanding mechanisms of biodiversity has been a central question in ecology. The coexistence of three species in rock-paper-scissors (RPS) systems are discussed by many authors; however, the relation between coexistence and network structure is rarely discussed. Here we present a metapopulation model for RPS game. The total population is assumed to consist of three subpopulations (nodes). Each individual migrates by random walk; the destination of migration is randomly determined. From reaction-migration equations, we obtain the population dynamics. It is found that the dynamic highly depends on network structures. When a network is homogeneous, the dynamics are neutrally stable: each node has a periodic solution, and the oscillations synchronize in all nodes. However, when a network is heterogeneous, the dynamics approach stable focus and all nodes reach equilibriums with different densities. Hence, the heterogeneity of the network promotes biodiversity.
Collapse
|
8
|
Szolnoki A, Perc M. Biodiversity in models of cyclic dominance is preserved by heterogeneity in site-specific invasion rates. Sci Rep 2016; 6:38608. [PMID: 27917952 PMCID: PMC5137108 DOI: 10.1038/srep38608] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
Global, population-wide oscillations in models of cyclic dominance may result in the collapse of biodiversity due to the accidental extinction of one species in the loop. Previous research has shown that such oscillations can emerge if the interaction network has small-world properties, and more generally, because of long-range interactions among individuals or because of mobility. But although these features are all common in nature, global oscillations are rarely observed in actual biological systems. This begets the question what is the missing ingredient that would prevent local oscillations to synchronize across the population to form global oscillations. Here we show that, although heterogeneous species-specific invasion rates fail to have a noticeable impact on species coexistence, randomness in site-specific invasion rates successfully hinders the emergence of global oscillations and thus preserves biodiversity. Our model takes into account that the environment is often not uniform but rather spatially heterogeneous, which may influence the success of microscopic dynamics locally. This prevents the synchronization of locally emerging oscillations, and ultimately results in a phenomenon where one type of randomness is used to mitigate the adverse effects of other types of randomness in the system.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia.,CAMTP - Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
| |
Collapse
|
9
|
Szolnoki A, Mobilia M, Jiang LL, Szczesny B, Rucklidge AM, Perc M. Cyclic dominance in evolutionary games: a review. J R Soc Interface 2014; 11:20140735. [PMID: 25232048 PMCID: PMC4191105 DOI: 10.1098/rsif.2014.0735] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/22/2014] [Indexed: 11/12/2022] Open
Abstract
Rock is wrapped by paper, paper is cut by scissors and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator-prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms and competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more, regardless of the particularities of the game. Here, we review recent advances on the rock-paper-scissors (RPS) and related evolutionary games, focusing, in particular, on pattern formation, the impact of mobility and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional RPS models and the application of the complex Ginzburg-Landau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related, for example, to dynamical effects of coevolutionary rules and invasion reversals owing to multi-point interactions, are also outlined.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 49, 1525 Budapest, Hungary
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Luo-Luo Jiang
- College of Physics and Electronic Information Engineering, Wenzhou University, 325035 Wenzhou, People's Republic of China
| | - Bartosz Szczesny
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair M Rucklidge
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| |
Collapse
|
10
|
Vukov J, Szolnoki A, Szabó G. Diverging fluctuations in a spatial five-species cyclic dominance game. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022123. [PMID: 24032791 DOI: 10.1103/physreve.88.022123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Indexed: 06/02/2023]
Abstract
A five-species predator-prey model is studied on a square lattice where each species has two prey and two predators on the analogy to the rock-paper-scissors-lizard-Spock game. The evolution of the spatial distribution of species is governed by site exchange and invasion between the neighboring predator-prey pairs, where the cyclic symmetry can be characterized by two different invasion rates. The mean-field analysis has indicated periodic oscillations in the species densities with a frequency becoming zero for a specific ratio of invasion rates. When varying the ratio of invasion rates, the appearance of this zero-eigenvalue mode is accompanied by neutrality between the species associations. Monte Carlo simulations of the spatial system reveal diverging fluctuations at a specific invasion rate, which can be related to the vanishing dominance between all pairs of species associations.
Collapse
Affiliation(s)
- Jeromos Vukov
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | | | | |
Collapse
|
11
|
Masuda N. Oscillatory dynamics in evolutionary games are suppressed by heterogeneous adaptation rates of players. J Theor Biol 2008; 251:181-9. [DOI: 10.1016/j.jtbi.2007.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 11/12/2007] [Accepted: 11/12/2007] [Indexed: 11/16/2022]
|