1
|
Ponti F, Campolungo M, Melchiori C, Bono N, Candiani G. Cationic lipids for gene delivery: many players, one goal. Chem Phys Lipids 2021; 235:105032. [PMID: 33359210 DOI: 10.1016/j.chemphyslip.2020.105032] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Lipid-based carriers represent the most widely used alternative to viral vectors for gene expression and gene silencing purposes. This class of non-viral vectors is particularly attractive for their ease of synthesis and chemical modifications to endow them with desirable properties. Despite combinatorial approaches have led to the generation of a large number of cationic lipids displaying different supramolecular structures and improved behavior, additional effort is needed towards the development of more and more effective cationic lipids for transfection purposes. With this review, we seek to highlight the great progress made in the design of each and every constituent domain of cationic lipids, that is, the chemical structure of the headgroup, linker and hydrophobic moieties, and on the specific effect on the assembly with nucleic acids. Since the complexity of such systems is known to affect their performances, the role of formulation, stability and phase behavior on the transfection efficiency of such assemblies will be thoroughly discussed. Our objective is to provide a conceptual framework for the development of ever more performing lipid gene delivery vectors.
Collapse
Affiliation(s)
- Federica Ponti
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy; Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Dept. Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC, Canada
| | - Matilde Campolungo
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Clara Melchiori
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Nina Bono
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| | - Gabriele Candiani
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| |
Collapse
|
2
|
Chronopoulou L, Cutonilli A, Cametti C, Dentini M, Palocci C. PLGA-based nanoparticles: effect of chitosan in the aggregate stabilization. A dielectric relaxation spectroscopy study. Colloids Surf B Biointerfaces 2012; 97:117-23. [PMID: 22609591 DOI: 10.1016/j.colsurfb.2012.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 11/18/2022]
Abstract
Chitosan-modified polylactic-co-glycolic acid (PLGA) nanoparticles with average diameter of 200 nm in PBS buffer solution have been investigated by means of dielectric relaxation spectroscopy measurements in the frequency range (1 MHz-2 GHz) where interfacial polarizations occur. PLGA-based nanoparticles offer remarkable advantages in different biotechnological fields, such as their biocompatibility, easiness of administration and rather complete biodegradation. However, despite the use of these drug delivery systems is increasing, little is known about the basic process involved in the formation of complexes and in the subsequent release kinetics. In the present work, we have characterized the colloidal behavior of PLGA-based nanoparticles in the presence of oppositely charged chitosan polyelectrolyte by means of dynamic light scattering, electrophoretic mobility and radiowave dielectric relaxation measurements. In particular, we have emphasized how the presence of a coating layer at the nanoparticle surface could exert a marked slowing-down in the drug release. The consequence of this finding is briefly discussed at the light of some biological implications.
Collapse
Affiliation(s)
- L Chronopoulou
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | |
Collapse
|
3
|
ParAB-mediated intermolecular association of plasmid P1 parS sites. Virology 2011; 421:192-201. [PMID: 22018490 DOI: 10.1016/j.virol.2011.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/05/2011] [Accepted: 09/28/2011] [Indexed: 11/20/2022]
Abstract
The P1 plasmid partition system depends on ParA-ParB proteins acting on centromere-like parS sites for a faithful plasmid segregation during the Escherichia coli cell cycle. In vivo we placed parS into host E. coli chromosome and on a Sop(+) F plasmid and found that the stability of a P1 plasmid deleted for parA-parB could be partially restored when parB was expressed in trans. In vitro, parS, conjugated to magnetic beads could capture free parS DNA fragment in presence of ParB. In vitro, ParA stimulated ParB-mediated association of intermolecular parS sites in an ATP-dependent manner. However, in the presence of ADP, ParA reduced ParB-mediated pairing to levels below that seen by ParB alone. ParB of P1 pairs the parS sites of plasmids in vivo and fragments in vitro. Our findings support a model whereby ParB complexes P1 plasmids, ParA-ATP stimulates this interaction and ParA-ADP inhibits ParB pairing activity in a parS-independent manner.
Collapse
|
4
|
|