1
|
Sardeli E, Michas G, Pavlou K, Vallianatos F, Karakonstantis A, Chatzopoulos G. Complexity of Recent Earthquake Swarms in Greece in Terms of Non-Extensive Statistical Physics. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25040667. [PMID: 37190455 PMCID: PMC10137995 DOI: 10.3390/e25040667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Greece exhibits the highest seismic activity in Europe, manifested in intense seismicity with large magnitude events and frequent earthquake swarms. In the present work, we analyzed the spatiotemporal properties of recent earthquake swarms that occurred in the broader area of Greece using the Non-Extensive Statistical Physics (NESP) framework, which appears suitable for studying complex systems. The behavior of complex systems, where multifractality and strong correlations among the elements of the system exist, as in tectonic and volcanic environments, can adequately be described by Tsallis entropy (Sq), introducing the Q-exponential function and the entropic parameter q that expresses the degree of non-additivity of the system. Herein, we focus the analysis on the 2007 Trichonis Lake, the 2016 Western Crete, the 2021-2022 Nisyros, the 2021-2022 Thiva and the 2022 Pagasetic Gulf earthquake swarms. Using the seismicity catalogs for each swarm, we investigate the inter-event time (T) and distance (D) distributions with the Q-exponential function, providing the qT and qD entropic parameters. The results show that qT varies from 1.44 to 1.58, whereas qD ranges from 0.46 to 0.75 for the inter-event time and distance distributions, respectively. Furthermore, we describe the frequency-magnitude distributions with the Gutenberg-Richter scaling relation and the fragment-asperity model of earthquake interactions derived within the NESP framework. The results of the analysis indicate that the statistical properties of earthquake swarms can be successfully reproduced by means of NESP and confirm the complexity and non-additivity of the spatiotemporal evolution of seismicity. Finally, the superstatistics approach, which is closely connected to NESP and is based on a superposition of ordinary local equilibrium statistical mechanics, is further used to discuss the temporal patterns of the earthquake evolution during the swarms.
Collapse
Affiliation(s)
- Eirini Sardeli
- Section of Geophysics-Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Georgios Michas
- Section of Geophysics-Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Institute of Physics of Earth's Interior and Geohazards, UNESCO Chair on Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research & Innovation Center, 73133 Chania, Greece
| | - Kyriaki Pavlou
- Section of Geophysics-Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Institute of Physics of Earth's Interior and Geohazards, UNESCO Chair on Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research & Innovation Center, 73133 Chania, Greece
| | - Filippos Vallianatos
- Section of Geophysics-Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Institute of Physics of Earth's Interior and Geohazards, UNESCO Chair on Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research & Innovation Center, 73133 Chania, Greece
| | - Andreas Karakonstantis
- Institute of Physics of Earth's Interior and Geohazards, UNESCO Chair on Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research & Innovation Center, 73133 Chania, Greece
| | - Georgios Chatzopoulos
- Institute of Physics of Earth's Interior and Geohazards, UNESCO Chair on Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research & Innovation Center, 73133 Chania, Greece
| |
Collapse
|
2
|
Non-Extensive Statistical Analysis of Acoustic Emissions: The Variability of Entropic Index q during Loading of Brittle Materials until Fracture. ENTROPY 2021; 23:e23030276. [PMID: 33668775 PMCID: PMC7996186 DOI: 10.3390/e23030276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022]
Abstract
Non-extensive statistical mechanics (NESM), introduced by Tsallis based on the principle of non-additive entropy, is a generalisation of the Boltzmann-Gibbs statistics. NESM has been shown to provide the necessary theoretical and analytical implementation for studying complex systems such as the fracture mechanisms and crack evolution processes that occur in mechanically loaded specimens of brittle materials. In the current work, acoustic emission (AE) data recorded when marble and cement mortar specimens were subjected to three distinct loading protocols until fracture, are discussed in the context of NESM. The NESM analysis showed that the cumulative distribution functions of the AE interevent times (i.e., the time interval between successive AE hits) follow a q-exponential function. For each examined specimen, the corresponding Tsallis entropic q-indices and the parameters βq and τq were calculated. The entropic index q shows a systematic behaviour strongly related to the various stages of the implemented loading protocols for all the examined specimens. Results seem to support the idea of using the entropic index q as a potential pre-failure indicator for the impending catastrophic fracture of the mechanically loaded specimens.
Collapse
|
3
|
Loukidis A, Triantis D, Stavrakas I. Non-Extensive Statistical Analysis of Acoustic Emissions Recorded in Marble and Cement Mortar Specimens Under Mechanical Load Until Fracture. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1115. [PMID: 33286884 PMCID: PMC7597240 DOI: 10.3390/e22101115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
Non-extensive statistical mechanics (NESM), which is a generalization of the traditional Boltzmann-Gibbs statistics, constitutes a theoretical and analytical tool for investigating the irreversible damage evolution processes and fracture mechanisms occurring when materials are subjected to mechanical loading. In this study, NESM is used for the analysis of the acoustic emission (AE) events recorded when marble and cement mortar specimens were subjected to mechanical loading until fracture. In total, AE data originating from four distinct loading protocols are presented. The cumulative distribution of inter-event times (time interval between two consecutive AE events) and the inter-event distances (three-dimensional Euclidian distance between the centers of successive AE events) were examined under the above concept and it was found that NESM is suitable to detect criticality under the terms of mechanical status of a material. This was conducted by evaluating the fitting results of the q-exponential function and the corresponding q-indices of Tsallis entropy qδτ and qδr, along with the parameters τδτ and dδr. Results support that qδτ+qδr≈2 for AE data recorded from marble and cement mortar specimens of this work, which is in good agreement with the conjecture previously found in seismological data and AE data recorded from Basalt specimens.
Collapse
Affiliation(s)
- Andronikos Loukidis
- Electronic Devices and Materials Laboratory, Department of Electrical and Electronics Engineering, University of West Attica, 250 Thivon Avenue, 122 44 Athens, Greece; (D.T.); (I.S.)
| | | | | |
Collapse
|
4
|
Sarlis NV, Skordas ES, Varotsos PA. Nonextensivity and natural time: The case of seismicity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:021110. [PMID: 20866778 DOI: 10.1103/physreve.82.021110] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 06/14/2010] [Indexed: 05/29/2023]
Abstract
Nonextensive statistical mechanics, pioneered by Tsallis, has recently achieved a generalization of the Gutenberg-Richter law for earthquakes. This remarkable generalization is combined here with natural time analysis, which enables the distinction of two origins of self-similarity, i.e., the process' memory and the process' increments infinite variance. By using also detrended fluctuation analysis for the detection of long-range temporal correlations, we demonstrate the existence of both temporal and magnitude correlations in real seismic data of California and Japan. Natural time analysis reveals that the nonextensivity parameter q , in contrast to some published claims, cannot be considered as a measure of temporal organization, but the Tsallis formulation does achieve a satisfactory description of real seismic data for Japan for q=1.66 when supplemented by long-range temporal correlations.
Collapse
Affiliation(s)
- N V Sarlis
- Solid Earth Physics Institute, Physics Department, University of Athens, Panepistimiopolis, Zografos, Greece
| | | | | |
Collapse
|
5
|
Mori T, Kawamura H. Simulation study of earthquakes based on the two-dimensional Burridge-Knopoff model with long-range interactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:051123. [PMID: 18643042 DOI: 10.1103/physreve.77.051123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Indexed: 05/26/2023]
Abstract
Spatiotemporal correlations of the two-dimensional (2D) spring-block (Burridge-Knopoff) models of earthquakes with the long-range interblock interactions are extensively studied by means of numerical computer simulations. The long-range interaction derived from an elastic theory, which takes account of the effect of the elastic body adjacent to the fault plane, falls off with distance r as 1r;{3} . Comparison is made with the properties of the corresponding short-range models studied earlier. Seismic spatiotemporal correlations of the long-range models generally tend to be weaker than those of the short-range models. The magnitude distribution exhibits a "near-critical" behavior, i.e., a power-law-like behavior close to the Gutenberg-Richter law, for a wide parameter range with its B -value, B approximately 0.55 , insensitive to the model parameters, in sharp contrast to that of the 2D short-range model and those of the 1D short-range and long-range models where such a near-critical behavior is realized only by fine tuning the model parameters. In contrast to the short-range case, the mean stress drop at a seismic event of the long-range model is nearly independent of its magnitude, consistent with the observation. Large events often accompany foreshocks together with a doughnutlike quiescence as their precursors, while they hardly accompany aftershocks with almost negligible seismic correlations observed after the main shock.
Collapse
Affiliation(s)
- Takahiro Mori
- Department of Earth and Space Science, Faculty of Science, Osaka University, Toyonaka 560-0043, Japan
| | | |
Collapse
|