1
|
Hasan MM, Choudhuri D. Metastable states assisted homogeneous nucleation in supercooled liquid aluminum alloys: Insights from a phenomenologically coupled atomistic, phase-field, and machine learning investigation. J Chem Phys 2025; 162:084501. [PMID: 39998171 DOI: 10.1063/5.0249473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Crystallization due to liquid → solid transformation is observed in many natural and engineering processes. Extant literature indicates that crystallization in supercooled liquids is initiated by precursory metastable phases or states, also called non-classical nucleation. For face-centered cubic (FCC) materials, latest experimental and computational studies suggest that metastable hexagonal-closed packed (HCP) structures facilitate equilibrium FCC formation. However, the underlying nucleation mechanism remains unclear. Here, we examine structural changes and energetic barriers associated with such a non-classical mechanism, by performing molecular dynamics (MD) simulations using pure Al, Al-0.5 at. %Cu, and Al-0.5 at. %Ni (all FCC-formers) and phenomenologically coupling MD results with phase-field (PF) modeling. Such a coupling involved initializing PF simulation domains and constructing Landau polynomials-consistent with MD observations. Unsupervised machine learning was utilized to capture nuclei structures from MD simulations, while neural networks helped in extracting equilibrium interfacial energies from PF modeling. Atomistic simulations showed that precursory nuclei are comprised of collection of metastable-HCP states with medium ranged ordering. The pockets of HCP states later transform to critical nuclei-containing an FCC core and an outer layer of HCP. PF modeling qualitatively replicated the precursory-to-critical nuclei transformation and showed that the energetic barriers between the precursory and critical nuclei are substantially smaller than predictions obtained from classical nucleation theory. Together, these observations permitted us to propose a holistic non-classical mechanism that links triangular motifs within Al-based supercooled liquids to the critical nuclei via in-liquid structural transformations.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA
| | - Deep Choudhuri
- Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA
| |
Collapse
|
2
|
Hamm P. Toward an FPGA-based dedicated computer for molecular dynamics simulations. J Chem Phys 2025; 162:054108. [PMID: 39902687 DOI: 10.1063/5.0248834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/04/2025] [Indexed: 02/06/2025] Open
Abstract
First steps toward a molecular dynamics (MD) implementation in a cluster of field-programmable gate arrays (FPGAs) are presented, reaching a simulation speed of a few microseconds/day. The nodes in this cluster are programmed into a mid-ranged FPGA (Artix 7 XC7A200T), interconnected as a 3D torus by fast optical links. The implemented MD algorithm is highly parallelized and highly pipelined internally. The FPGA cluster is freely scalable in terms of size, i.e., a larger MD system requires more nodes, however, without compromising simulation speed. The performance in terms of energy stability and simulation speed is analyzed. At present, the focus lies on the fast networking, while only minimal MD functionality has been implemented so far, i.e., Lennard-Jones interactions and a thermostat, which were needed to demonstrate the feasibility of the FPGA cluster to run multi-microsecond simulations. To that end, the nucleation of a super-cooled Lennard-Jones liquid is investigated by unbiased MD simulations, which is a difficult MD problem since a high nucleation barrier has to be overcome. Finally, the pathways toward a full MD implementation are outlined. The current implementation will be made available as an open-source development project.
Collapse
Affiliation(s)
- Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland and Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Schwerdtfeger P, Wales DJ. 100 Years of the Lennard-Jones Potential. J Chem Theory Comput 2024; 20:3379-3405. [PMID: 38669689 DOI: 10.1021/acs.jctc.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
It is now 100 years since Lennard-Jones published his first paper introducing the now famous potential that bears his name. It is therefore timely to reflect on the many achievements, as well as the limitations, of this potential in the theory of atomic and molecular interactions, where applications range from descriptions of intermolecular forces to molecules, clusters, and condensed matter.
Collapse
Affiliation(s)
- Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, Auckland 0745, New Zealand
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
4
|
Li L, Wang X, Yan Y, Francisco JS, Zhang J, Zeng XC, Zhong J. Resolving Temperature-Dependent Hydrate Nucleation Pathway: The Role of "Transition Layer". J Am Chem Soc 2023; 145:24166-24174. [PMID: 37874937 DOI: 10.1021/jacs.3c08246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Understanding the nucleation of natural gas hydrate (NGH) at different conditions has important implications to NGH recovery and other industrial applications, such as gas storage and separation. Herein, vast numbers of hydrate nucleation events are traced via molecular dynamics (MD) simulations at different degrees of supercooling (or driving forces). Specifically, to precisely characterize a hydrate nucleus from an aqueous system during the MD simulation, we develop an evolutionary order parameter (OP) to recognize the nucleus size and shape. Subsequently, the free energy landscapes of hydrate during nucleation are explored by using the newly developed OP. The results suggest that at 270 K (or 0.92 Tm supercooling, where Tm is the melting point), the near-rounded nucleus prevails during the nucleation, as described from the classical nucleation theory. In contrast, at relatively strong driving forces of 0.85 and 0.88 Tm, nonclassical nucleation events arise. Specifically, the pathway toward an elongated nucleus becomes as important as the pathway toward a near-rounded nucleus. To explain the distinct nucleation phenomena at different supercoolings, a notion of a "transition layer" (or liquid-blob-like layer) is proposed. Here, the transition layer is to describe the interfacial region between the nucleus and aqueous solution, and this layer entails two functionalities: (1) it tends to retain CH4 depending on the degrees of supercooling and (2) it facilitates collision among CH4, which thus promote the incorporation of CH4 into nucleus. Our simulation indicates that compared to the near-rounded nucleus, the transition layer surrounding the elongated nucleus is more evident with the higher collision rate among CH4 molecules. As such, the transition layer tends to promote the elongated nucleus pathway, while offsetting the cost of larger surface free energy associated with the elongated nucleus. At 0.92 Tm, however, the transition layer gradually disappears, and classical nucleation events dominate. Overall, the notion of "transition layer" offers deeper insight into the NGH nucleation at different degrees of supercooling and could be extended to describe other types of hydrate nucleation.
Collapse
Affiliation(s)
- Liwen Li
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
- Department of Materials Science & Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Xiao Wang
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Youguo Yan
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Jun Zhang
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiao Cheng Zeng
- Department of Materials Science & Engineering, City University of Hong Kong, Hong Kong 999077, China
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jie Zhong
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
5
|
Lam J, Pietrucci F. Critical comparison of general-purpose collective variables for crystal nucleation. Phys Rev E 2023; 107:L012601. [PMID: 36797915 DOI: 10.1103/physreve.107.l012601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
The nucleation of crystals is a prominent phenomenon in science and technology that still lacks a full atomic-scale understanding. Much work has been devoted to identifying order parameters able to track the process, from the inception of early nuclei to their maturing to critical size until growth of an extended crystal. We critically assess and compare two powerful distance-based collective variables, an effective entropy derived from liquid state theory and the path variable based on permutation invariant vectors using the Kob-Andersen binary mixture and a combination of enhanced-sampling techniques. Our findings reveal a comparable ability to drive nucleation when a bias potential is applied, and comparable free-energy barriers and structural features. Yet, we also found an imperfect correlation with the committor probability on the barrier top which was bypassed by changing the order parameter definition.
Collapse
Affiliation(s)
- Julien Lam
- CEMES, Centre National de la Recherche Scientifique and Université de Toulouse, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France
- Université Lille, Centre National de la Recherche Scientifique, INRA, ENSCL, UMR 8207, UMET, Unité Matériaux et Transformations, F 59000 Lille, France
| | - Fabio Pietrucci
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7590, IMPMC, 75005 Paris, France
| |
Collapse
|
6
|
Zhou H, Feng YJ, Wang C, Huang T, Liu YR, Jiang S, Wang CY, Huang W. A high-accuracy machine-learning water model for exploring water nanocluster structures. NANOSCALE 2021; 13:12212-12222. [PMID: 34231634 DOI: 10.1039/d1nr03128g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water, the most important molecule on the Earth, possesses many essential and unique physical properties that are far from completely understood, partly due to serious difficulties in identifying the precise microscopic structures of water. Hence, identifying the structures of water nanoclusters is a fundamental and challenging issue for studies on the relationship between the macroscopic physical properties of water and its microscopic structures. For large-scale simulations (at the level of nm and ns) of water nanoclusters, a calculation method with simultaneous accuracy at the level of quantum chemistry and efficiency at the level of an empirical potential method is in great demand. Herein, a machine-learning (ML) water model was utilized to explore the microscopic structural features at different length scales for water nanoclusters with a size up to several nm. The ML water model can be employed to efficiently predict the structures of water nanoclusters with a similar accuracy to that of density functional theory and with substantially lower computational resource demands. To validate the low-lying structure search results with experimental spectral results, an ML water model combined with velocity autocorrelation function analysis was used to simulate the vibrational spectra of water nanoclusters with up to thousands of water molecules. By comparing the simulated and experimentally recorded vibrational spectra, the atomic structures determined by a simulation based on the ML water model are all verified. To demonstrate its ability to represent water's structural evolution at large length and time scales, the ML water model was employed to model the structural evolution during the crystal-liquid transition, and the phase transition temperatures of water clusters with different sizes were precisely predicted. The ML water model provides an efficient theoretical calculation tool for exploring the structures and physical properties of water and their relationships, especially for clusters with relatively large sizes and processes with relatively long durations.
Collapse
Affiliation(s)
- Hao Zhou
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kargozarfard Z, Haghtalab A, Ayatollahi S, Badizad MH. Molecular Dynamics Simulation of Calcium Sulfate Nucleation in Homogeneous and Heterogeneous Crystallization Conditions: An Application in Water Flooding. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zahra Kargozarfard
- Department of Chemical Engineering, Tarbiat Modares University, PO Box 14115-143, Tehran 1411713116, Iran
| | - Ali Haghtalab
- Department of Chemical Engineering, Tarbiat Modares University, PO Box 14115-143, Tehran 1411713116, Iran
| | - Shahab Ayatollahi
- Sharif Upstream Petroleum Research Institute, Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-9465, Iran
| | - Mohammad Hasan Badizad
- Sharif Upstream Petroleum Research Institute, Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-9465, Iran
| |
Collapse
|
8
|
Ouyang W, Sun B, Sun Z, Xu S. Entire crystallization process of Lennard-Jones liquids: A large-scale molecular dynamics study. J Chem Phys 2020; 152:054903. [DOI: 10.1063/1.5139574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Wenze Ouyang
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Bin Sun
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Zhiwei Sun
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shenghua Xu
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
The role of the dipole moment orientations in the crystallization tendency of the van der Waals liquids - molecular dynamics simulations. Sci Rep 2020; 10:283. [PMID: 31937904 PMCID: PMC6959262 DOI: 10.1038/s41598-019-57158-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022] Open
Abstract
Computer simulations of model systems play a remarkable role in the contemporary studies of structural, dynamic and thermodynamic properties of supercooled liquids. However, the commonly employed model systems, i.e., simple-liquids, do not reflect the internal features of the real molecules, e.g., structural anisotropy and spatial distribution of charges, which might be crucial for the behavior of real materials. In this paper, we use the new model molecules of simple but anisotropic structure, to studies the effect of dipole moment orientation on the crystallization tendency. Our results indicate that proper orientation of the dipole moment could totally change the stability behavior of the system. Consequently, the exchange of a single atom within the molecule causing the change of dipole moment orientation might be crucial for controlling the crystallization tendency. Moreover, employing the classical nucleation theory, we explain the reason for this behavior.
Collapse
|
10
|
Hall KW, Sirk TW, Percec S, Klein ML, Shinoda W. Divining the shape of nascent polymer crystal nuclei. J Chem Phys 2019; 151:144901. [PMID: 31615257 DOI: 10.1063/1.5123983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We demonstrate that nascent polymer crystals (i.e., nuclei) are anisotropic entities with neither spherical nor cylindrical geometry, in contrast to previous assumptions. In fact, cylindrical, spherical, and other high symmetry geometries are thermodynamically unfavorable. Moreover, postcritical transitions are necessary to achieve the lamellae that ultimately arise during the crystallization of semicrystalline polymers. We also highlight how inaccurate treatments of polymer nucleation can lead to substantial errors (e.g., orders of magnitude discrepancies in predicted nucleation rates). These insights are based on quantitative analysis of over four million crystal clusters from the crystallization of prototypical entangled polyethylene melts. New comprehensive bottom-up models are needed to capture polymer nucleation.
Collapse
Affiliation(s)
- Kyle Wm Hall
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Timothy W Sirk
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005, USA
| | - Simona Percec
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Michael L Klein
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
11
|
Tsai ST, Smith Z, Tiwary P. Reaction coordinates and rate constants for liquid droplet nucleation: Quantifying the interplay between driving force and memory. J Chem Phys 2019; 151:154106. [PMID: 31640371 DOI: 10.1063/1.5124385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this work, we revisit the classic problem of homogeneous nucleation of a liquid droplet in a supersaturated vapor phase. We consider this at different extents of the driving force, or equivalently the supersaturation, and calculate a reaction coordinate (RC) for nucleation as the driving force is varied. The RC is constructed as a linear combination of three order parameters, where one accounts for the number of liquidlike atoms and the other two for local density fluctuations. The RC is calculated from biased and unbiased molecular dynamics (MD) simulations using the spectral gap optimization approach "SGOOP" [P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 113, 2839 (2016)]. Our key finding is that as the supersaturation decreases, the RC ceases to simply be the number of liquidlike atoms, and instead, it becomes important to explicitly consider local density fluctuations that correlate with shape and density variations in the nucleus. All three order parameters are found to have similar barriers in their respective potentials of mean force; however, as the supersaturation decreases, the density fluctuations decorrelate slower and thus carry longer memory. Thus, at lower supersaturations, density fluctuations are non-Markovian and cannot be simply ignored from the RC by virtue of being noise. Finally, we use this optimized RC to calculate nucleation rates in the infrequent metadynamics framework and show that it leads to a more accurate estimate of the nucleation rate with four orders of magnitude acceleration relative to unbiased MD.
Collapse
Affiliation(s)
- Sun-Ting Tsai
- Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Zachary Smith
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
12
|
Zhang Q, Wang J, Tang S, Wang Y, Li J, Zhou W, Wang Z. Molecular dynamics investigation of the local structure in iron melts and its role in crystal nucleation during rapid solidification. Phys Chem Chem Phys 2019; 21:4122-4135. [DOI: 10.1039/c8cp05654d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleation process of a bcc crystal after the formation of an MRO cluster.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Jincheng Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Sai Tang
- Powder Metallurgy Research Institute, Central South University
- Changsha
- P. R. China
| | - Yujian Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Junjie Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Wenquan Zhou
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| | - Zhijun Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
- Xi’an 710072
- P. R. China
| |
Collapse
|
13
|
Díaz Leines G, Rogal J. Maximum Likelihood Analysis of Reaction Coordinates during Solidification in Ni. J Phys Chem B 2018; 122:10934-10942. [DOI: 10.1021/acs.jpcb.8b08718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Grisell Díaz Leines
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jutta Rogal
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
14
|
Malek SMA, Poole PH, Saika-Voivod I. Thermodynamic and structural anomalies of water nanodroplets. Nat Commun 2018; 9:2402. [PMID: 29921912 PMCID: PMC6008328 DOI: 10.1038/s41467-018-04816-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/17/2018] [Indexed: 11/09/2022] Open
Abstract
Liquid water nanodroplets are important in earth's climate, and are valuable for studying supercooled water because they resist crystallisation well below the bulk freezing temperature. Bulk liquid water has well-known thermodynamic anomalies, such as a density maximum, and when supercooled is hypothesised to exhibit a liquid-liquid phase transition (LLPT) at elevated pressure. However, it is not known how these bulk anomalies might manifest themselves in nanodroplets. Here we show, using simulations of the TIP4P/2005 water model, that bulk anomalies occur in nanodroplets as small as 360 molecules. We also show that the Laplace pressure inside small droplets reaches 220 MPa at 180 K, conditions close to the LLPT of TIP4P/2005. While the density and pressure inside nanodroplets coincide with bulk values at moderate supercooling, we show that deviations emerge at lower temperature, as well as significant radial density gradients, which arise from and signal the approach to the LLPT.
Collapse
Affiliation(s)
- Shahrazad M A Malek
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | - Peter H Poole
- Department of Physics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada.
| |
Collapse
|
15
|
Lam J, Lutsko JF. Lattice induced crystallization of nanodroplets: the role of finite-size effects and substrate properties in controlling polymorphism. NANOSCALE 2018; 10:4921-4926. [PMID: 29480297 DOI: 10.1039/c7nr08705e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Targeting specific technological applications requires the control of nanoparticle properties, especially the crystalline polymorph. Freezing a nanodroplet deposited on a solid substrate leads to the formation of crystalline structures. We study the inherent mechanisms underlying this general phenomenon by means of molecular dynamics simulations. Our work shows that different crystal structures can be selected by finely tuning the solid substrate lattice parameter. Indeed, while for our system, face-centered cubic is usually the most preponderant structure, the growth of two distinct polymorphs, hexagonal centered packing and body-centered cubic, was also observed even when the solid substrate was face-centered cubic. Finally, we also demonstrated that the growth of hexagonal centered packing is conditioned by the appearance of large enough body-centered cubic clusters thus suggesting the presence of a cross-nucleation pathway. Our results provide insights into the impact of nanoscale effects and solid substrate properties towards the growth of polymorphic nanomaterials.
Collapse
Affiliation(s)
- Julien Lam
- Center for Nonlinear Phenomena and Complex Systems, Code Postal 231, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | | |
Collapse
|
16
|
Valdès LC, Gerges J, Mizuguchi T, Affouard F. Crystallization tendencies of modelled Lennard-Jones liquids with different attractions. J Chem Phys 2018; 148:014501. [DOI: 10.1063/1.5004659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- L.-C. Valdès
- Unité Matériaux et Transformations (UMET), UMR CNRS 8207, UFR de Physique, BAT P5, Université Lille 1, 59655 Villeneuve d’Ascq, France
| | - J. Gerges
- Unité Matériaux et Transformations (UMET), UMR CNRS 8207, UFR de Physique, BAT P5, Université Lille 1, 59655 Villeneuve d’Ascq, France
| | - T. Mizuguchi
- Unité Matériaux et Transformations (UMET), UMR CNRS 8207, UFR de Physique, BAT P5, Université Lille 1, 59655 Villeneuve d’Ascq, France
- Institute for the Promotion of University Strategy, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - F. Affouard
- Unité Matériaux et Transformations (UMET), UMR CNRS 8207, UFR de Physique, BAT P5, Université Lille 1, 59655 Villeneuve d’Ascq, France
| |
Collapse
|
17
|
Pang HH, Bi QL, Huang HS, Lü YJ. Anisotropic stress inhibits crystallization in Cu-Zr glass-forming liquids. J Chem Phys 2017; 147:234503. [PMID: 29272946 DOI: 10.1063/1.5001677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Liquids attain a metastable state without crystallizing by cooling rapidly to a given temperature below the melting point. With increasing supercooling, the nucleation rate would show an increase based on the prediction of the classical nucleation theory. It is generally thought that the nucleation rate will reach the maximum upon approaching the glass transition temperature, Tg, for glass-forming liquids. We report that there exists a supercooled region above Tg in which the crystallization has actually been severely suppressed. Our molecular dynamics simulations show that the growth of embryos in the supercooled Cu60Zr40 melt is subjected to a strong anisotropic stress associated with the dynamic heterogeneity. Its long-range effect drives the embryo to grow into a ramified morphology so that the interface energy dominates over the embryo growth, leading to the suppression of nucleation.
Collapse
Affiliation(s)
- H H Pang
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Q L Bi
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - H S Huang
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Y J Lü
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
18
|
Ao T, Matsumoto M. Example of a Fluid-Phase Change Examined with MD Simulation: Evaporative Cooling of a Nanoscale Droplet. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11679-11686. [PMID: 28830145 DOI: 10.1021/acs.langmuir.7b02059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We carried out a series of molecular dynamics simulations in order to examine the evaporative cooling of a nanoscale droplet of a Lennard-Jones liquid. After thermally equilibrating a droplet at a temperature Tini/Tt ≃ 1.2 (Tt is the triple-point temperature), we started the evaporation into vacuum by removing vaporized particles and monitoring the change in droplet size and the temperature inside. As free evaporation proceeds, the droplet reaches a deep supercooled liquid state of T/Tt ≃ 0.7. The temperature was found to be uniform in spite of the fast evaporative cooling on the surface. The time evolution of the evaporating droplet properties was satisfactorily explained with a simple one-dimensional phase-change model. After a sufficiently long run, the supercooled droplet was crystallized into a polycrystalline fcc structure. The crystallization is a stochastic nucleation process. The time and the temperature of inception were evaluated over 42 samples, which indicate the existence of a stability limit.
Collapse
Affiliation(s)
- Takashi Ao
- Department of Mechanical Engineering and Science, Kyoto University , Kyoto 615-8540, Japan
| | - Mitsuhiro Matsumoto
- Department of Mechanical Engineering and Science, Kyoto University , Kyoto 615-8540, Japan
| |
Collapse
|
19
|
Loscar ES, Martin DA, Grigera TS. Stability limits for the supercooled liquid and superheated crystal of Lennard-Jones particles. J Chem Phys 2017; 147:034504. [DOI: 10.1063/1.4994049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Singha SK, Das PK, Maiti B. Thermodynamic formulation of the barrier for heterogeneous pinned nucleation: Implication to the crossover scenarios associated with barrierless and homogeneous nucleation. J Chem Phys 2017. [PMID: 28641419 DOI: 10.1063/1.4985631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The effect of contact line pinning on nucleation is reported using continuum thermodynamics. Based on the principle of the free-energy maximization, closed-form expressions in the dimensionless form for the free-energy of the three-phase metastable system and the thermodynamic barrier are formulated with respect to the system geometry and the substrate wettability. The condition of maximality limits the dynamic contact angle within the cluster-phase-phobic regime. The dimensionless nucleation barrier or the potency factor can be divided into two components related to the system geometry and the pinning effect. Depending on the relative value of the equilibrium and the critical dynamic contact angle, the contact line pinning can either have favorable or adverse effects. Associated pinning-depinning transition can also lead to the crossovers related to barrierless and homogeneous nucleation. Contact line tension is found to have a considerable effect during these transitional scenarios. Complete wetting transition associated with barrierless nucleation can take place due to the presence of tensile (negative) line tension. On the other hand, complete drying transition related to homogeneous nucleation can occur when line tension is compressive (positive) in nature. The pinning has a favorable effect only when the substrate wettability is within the cluster-phase-philic regime. There can be favorable, adverse, or no pinning effects when the substrate wettability is within the cluster-phase-phobic regime. Although the contact line is pinned, the minimum value of the potency factor is obtained when equilibrium and dynamic contact angles are equal.
Collapse
Affiliation(s)
- Sanat K Singha
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Prasanta K Das
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Biswajit Maiti
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
21
|
Díaz Leines G, Drautz R, Rogal J. Atomistic insight into the non-classical nucleation mechanism during solidification in Ni. J Chem Phys 2017; 146:154702. [DOI: 10.1063/1.4980082] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Grisell Díaz Leines
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Ralf Drautz
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jutta Rogal
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
22
|
Nguyen HT, Hoy RS. Effect of chain stiffness and temperature on the dynamics and microstructure of crystallizable bead-spring polymer melts. Phys Rev E 2016; 94:052502. [PMID: 27967146 DOI: 10.1103/physreve.94.052502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Indexed: 11/07/2022]
Abstract
We contrast the dynamics in model unentangled polymer melts of chains of three different stiffnesses: flexible, intermediate, and rodlike. Flexible and rodlike chains, which readily solidify into close-packed crystals (respectively, with randomly oriented and nematically aligned chains), display simple melt dynamics with Arrhenius temperature dependence and a discontinuous change upon solidification. Intermediate-stiffness chains, however, are fragile glass-formers displaying Vogel-Fulcher dynamical arrest, despite the fact that they also possess a nematic-close-packed crystalline ground state. To connect this difference in dynamics to the differing microstructure of the melts, we examine how various measures of structure, including cluster-level metrics recently introduced in studies of colloidal systems, vary with chain stiffness and temperature. No clear static-structural cause of the dynamical arrest is found. However, we find that the intermediate-stiffness chains display qualitatively different dynamical heterogeneity. Specifically, their stringlike motion (cooperative rearrangement) is correlated along chain backbones in a way not found for either flexible or rodlike chains. This activated "crawling" motion is clearly associated with the dynamical arrest observed in these systems, and illustrates one way in which factors controlling the crystallization versus glass formation competition in polymers can depend nonmonotonically on chain stiffness.
Collapse
Affiliation(s)
- Hong T Nguyen
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
23
|
Jungblut S, Dellago C. Heterogeneous Crystallization on Pairs of Pre-Structured Seeds. J Phys Chem B 2016; 120:9230-9. [PMID: 27479875 PMCID: PMC5011298 DOI: 10.1021/acs.jpcb.6b06510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/28/2016] [Indexed: 11/29/2022]
Abstract
Studying the effects of small pre-structured seeds on the crystallization transition in an undercooled monodisperse Lennard-Jones fluid with transition interface path sampling combined with molecular dynamics simulations, we analyze the impact of the simultaneous presence of two seeds with various structures. In the presence of seeds with face- and body-centered cubic structures, we find that decreasing the seed-to-seed distance enhances the probability of the crystalline clusters formed on one of the seeds to grow beyond the critical size, thus, increasing the crystal nucleation rates. In contrast, when seeds have an icosahedral structure, the crystalline clusters form mostly in the bulk. The crystal nucleation rate, however, is also determined by the distance between the seeds with regular structure in which the lattice spacing is equal to the bulk lattice constant, pointing to a heterogeneous crystal nucleation that occurs away from the icosahedrally structured seeds. For slightly squeezed seeds, the effects of the presence of seeds with face- and body-centered cubic structures are reduced in comparison to the regular seeds, and we do not see any effect of the presence of the second seed for seeds with squeezed icosahedral structure.
Collapse
Affiliation(s)
- Swetlana Jungblut
- Faculty of Physics, University
of Vienna, Boltzmanngasse
5, 1090 Wien, Austria
| | - Christoph Dellago
- Faculty of Physics, University
of Vienna, Boltzmanngasse
5, 1090 Wien, Austria
| |
Collapse
|
24
|
Jungblut S, Dellago C. Pathways to self-organization: Crystallization via nucleation and growth. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:77. [PMID: 27498980 DOI: 10.1140/epje/i2016-16077-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Crystallization, a prototypical self-organization process during which a disordered state spontaneously transforms into a crystal characterized by a regular arrangement of its building blocks, usually proceeds by nucleation and growth. In the initial stages of the transformation, a localized nucleus of the new phase forms in the old one due to a random fluctuation. Most of these nuclei disappear after a short time, but rarely a crystalline embryo may reach a critical size after which further growth becomes thermodynamically favorable and the entire system is converted into the new phase. In this article, we will discuss several theoretical concepts and computational methods to study crystallization. More specifically, we will address the rare event problem arising in the simulation of nucleation processes and explain how to calculate nucleation rates accurately. Particular attention is directed towards discussing statistical tools to analyze crystallization trajectories and identify the transition mechanism.
Collapse
Affiliation(s)
- S Jungblut
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Wien, Austria
| | - C Dellago
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Wien, Austria.
| |
Collapse
|
25
|
|
26
|
Sosso G, Chen J, Cox SJ, Fitzner M, Pedevilla P, Zen A, Michaelides A. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations. Chem Rev 2016; 116:7078-116. [PMID: 27228560 PMCID: PMC4919765 DOI: 10.1021/acs.chemrev.5b00744] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 11/28/2022]
Abstract
The nucleation of crystals in liquids is one of nature's most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments.
Collapse
Affiliation(s)
- Gabriele
C. Sosso
- Thomas Young Centre, London
Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street WC1E
6BT London, U.K.
| | - Ji Chen
- Thomas Young Centre, London
Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street WC1E
6BT London, U.K.
| | | | - Martin Fitzner
- Thomas Young Centre, London
Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street WC1E
6BT London, U.K.
| | - Philipp Pedevilla
- Thomas Young Centre, London
Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street WC1E
6BT London, U.K.
| | - Andrea Zen
- Thomas Young Centre, London
Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street WC1E
6BT London, U.K.
| | - Angelos Michaelides
- Thomas Young Centre, London
Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street WC1E
6BT London, U.K.
| |
Collapse
|
27
|
Malek SMA, Morrow GP, Saika-Voivod I. Crystallization of Lennard-Jones nanodroplets: From near melting to deeply supercooled. J Chem Phys 2015; 142:124506. [PMID: 25833595 DOI: 10.1063/1.4915917] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We carry out molecular dynamics (MD) and Monte Carlo (MC) simulations to characterize nucleation in liquid clusters of 600 Lennard-Jones particles over a broad range of temperatures. We use the formalism of mean first-passage times to determine the rate and find that Classical Nucleation Theory (CNT) predicts the rate quite well, even when employing simple modelling of crystallite shape, chemical potential, surface tension, and particle attachment rate, down to the temperature where the droplet loses metastability and crystallization proceeds through growth-limited nucleation in an unequilibrated liquid. Below this crossover temperature, the nucleation rate is still predicted when MC simulations are used to directly calculate quantities required by CNT. Discrepancy in critical embryo sizes obtained from MD and MC arises when twinned structures with five-fold symmetry provide a competing free energy pathway out of the critical region. We find that crystallization begins with hcp-fcc stacked precritical nuclei and differentiation to various end structures occurs when these embryos become critical. We confirm that using the largest embryo in the system as a reaction coordinate is useful in determining the onset of growth-limited nucleation and show that it gives the same free energy barriers as the full cluster size distribution once the proper reference state is identified. We find that the bulk melting temperature controls the rate, even though the solid-liquid coexistence temperature for the droplet is significantly lower. The value of surface tension that renders close agreement between CNT and direct rate determination is significantly lower than what is expected for the bulk system.
Collapse
Affiliation(s)
- Shahrazad M A Malek
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7, Canada
| | - Gregory P Morrow
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7, Canada
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7, Canada
| |
Collapse
|
28
|
Affiliation(s)
- J.A. van Meel
- FOM Institute for Atomic and Molecular Physics , Amsterdam, The Netherlands
| | - Y. Liu
- Department of Chemistry, University of Cambridge , Cambridge, UK
- State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology , Beijing, China
| | - D. Frenkel
- Department of Chemistry, University of Cambridge , Cambridge, UK
| |
Collapse
|
29
|
Zhang XX, Chen M, Fu M. Impact of surface nanostructure on ice nucleation. J Chem Phys 2014; 141:124709. [DOI: 10.1063/1.4896149] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Xiang-Xiong Zhang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Min Chen
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Ming Fu
- GE Aviation, Cincinnati, Ohio 45215, USA
| |
Collapse
|
30
|
Zhang H, Peng S, Mao L, Zhou X, Liang J, Wan C, Zheng J, Ju X. Freezing of Lennard-Jones fluid on a patterned substrate. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062410. [PMID: 25019797 DOI: 10.1103/physreve.89.062410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Indexed: 06/03/2023]
Abstract
Using molecular dynamics simulations, we study freezing of Lennard-Jones particles at commensurate substrate with triangular pattern. Throughout the box particles freeze onto the substrate and form close-packed layers. For the moderately attractive substrates, an intermediate hexatic phase between liquid and crystal is detected in the first two layers where the hexatic-solid freezing process is continuous while, counterintuitively, the liquid-hexatic process is of first order. Moreover, we observe that liquid-hexatic and hexatic-solid transitions shift towards higher temperatures with the attraction strength increasing. By contrast, the liquid-hexatic transition shifts faster than the hexatic-solid process, significantly widening the temperature range of the hexatic phase. When this phenomenon appears, freezing in the bulk always proceeds through a first-order transition at the same temperature. In addition, changes in the average structural order (three-dimensional) of the layers indicate that freezing processes in layers near substrates seem to cost the structural order of the bulk particles in their vicinity, and an intermediate prestructural cloud of medium-ordered particles is always observed before the layering freezing.
Collapse
Affiliation(s)
- Huijun Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Shuming Peng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Li Mao
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiaosong Zhou
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Jianhua Liang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Chubin Wan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jian Zheng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Xin Ju
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
31
|
Barros K, Klein W. Liquid to solid nucleation via onion structure droplets. J Chem Phys 2013; 139:174505. [DOI: 10.1063/1.4827884] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Scheifele B, Saika-Voivod I, Bowles RK, Poole PH. Heterogeneous nucleation in the low-barrier regime. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042407. [PMID: 23679429 DOI: 10.1103/physreve.87.042407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 02/27/2013] [Indexed: 06/02/2023]
Abstract
In simulations of the two-dimensional Ising model, we examine heterogeneous nucleation induced by a small impurity consisting of a line of l fixed spins. As l increases, we identify a limit of stability beyond which the metastable phase is not defined. We evaluate the free energy barrier for nucleation of the stable phase and show that, contrary to expectation, the barrier does not vanish on approach to the limit of stability. We also demonstrate that our values for the height of the barrier yield predictions for the nucleation time (from transition state theory) and the size of the critical cluster (from the nucleation theorem) that are in excellent agreement with direct measurements, even near the limit of stability.
Collapse
Affiliation(s)
- Benjamin Scheifele
- Department of Physics, St. Francis Xavier University, Antigonish, Nova Scotia, Canada B2G 2W5
| | | | | | | |
Collapse
|
33
|
Mickel W, Kapfer SC, Schröder-Turk GE, Mecke K. Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter. J Chem Phys 2013; 138:044501. [DOI: 10.1063/1.4774084] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
34
|
Lemarchand CA. Distribution of melting times and critical droplet in kinetic Monte Carlo and molecular dynamics. J Chem Phys 2013; 138:034506. [DOI: 10.1063/1.4775773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Jungblut S, Dellago C. Crystallization on prestructured seeds. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012305. [PMID: 23410329 DOI: 10.1103/physreve.87.012305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Indexed: 06/01/2023]
Abstract
The crystallization transition of an undercooled monodisperse Lennard-Jones fluid in the presence of small prestructured seeds is studied with transition path sampling combined with molecular dynamics simulations. Compared to the homogeneous crystallization, clusters of a few particles arranged into a face- and body-centered cubic structure enhance the crystallization, while icosahedrally ordered seeds do not change the reaction rate. We identify two distinct nucleation regimes-close to the seed and in the bulk. Crystallites form close to the face- and body-centered structures and tend to stay away from the icosahedrally ordered seeds.
Collapse
Affiliation(s)
- Swetlana Jungblut
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria
| | | |
Collapse
|
36
|
Lemarchand CA. Molecular dynamics simulations of a hard sphere crystal and reaction-like mechanism for homogeneous melting. J Chem Phys 2012; 136:234505. [DOI: 10.1063/1.4729753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Dorosz S, Schilling T. On the influence of a patterned substrate on crystallization in suspensions of hard spheres. J Chem Phys 2012; 136:044702. [DOI: 10.1063/1.3679385] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Chunsrivirot S, Diao Y, Trout BL. Binding affinity of a small molecule to an amorphous polymer in a solvent. Part 1: free energy of binding to a binding site. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:12381-12395. [PMID: 21936548 DOI: 10.1021/la201508m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Crystallization is commonly used in a separation and purification process in the production of a wide range of materials in various industries. In industry, crystallization usually starts with heterogeneous nucleation on a foreign surface. The complicated mechanism of heterogeneous nucleation is not well understood; however, we hypothesize that there might be a possible correlation between binding affinity to a surface and enhancement of nucleation. Recent studies show that amorphous polymers can be used to control crystallization, selectively produce pharmaceutical polymorphs, and discover novel pharmaceutical polymorphs. To investigate the possible correlation between the binding affinity of one molecule to key binding sites (local binding) and heterogeneous nucleation activity as well as the possibility of using this binding affinity to help guide the selection of polymers that promote heterogeneous nucleation, we computed the free energy of binding of aspirin to four nonporous cross-linked polymers in an ethanol-water 38 v% mixture. These cross-linked polymers are poly(4-acryloylmorpholine) (PAM), poly(2-carboxyethyl acrylate) (PCEA), poly(4-hydroxylbutyl acrylate) (PHBA), and polystyrene (PS); all of them were cross-linked with divinylbenzene (DVB). These systems were used because their heterogeneous nucleation activities are available in literature, and the ranking is PAM > PCEA > PHBA ≈ PS. We generated three independent surfaces for each polymer and computed the free energy of binding of aspirin to the best binding site that we found on each surface. The average free energies of binding to the best sites of PAM, PCEA, PHBA, and PS are -20.4 ± 1.0, -16.7 ± 1.0, -14.4 ± 1.1, and -13.6 ± 1.1 kcal/mol, respectively. We found that the trend of the magnitudes of the average free energies of binding to the best sites is PAM > PCEA > PHBA ≈ PS. This trend is very similar to that of heterogeneous nucleation activity. Our results suggest the importance of the free energy of binding to key sites (local binding) and the possibility of using this quantity to help guide the selection of polymers that promote heterogeneous nucleation.
Collapse
Affiliation(s)
- Surasak Chunsrivirot
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
39
|
Chunsrivirot S, Santiso E, Trout BL. Binding affinity of a small molecule to an amorphous polymer in a solvent. Part 2: preferential binding to local sites on a surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:12396-12404. [PMID: 21936549 DOI: 10.1021/la202593u] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Crystallization, a separation and purification process, is commonly used to produce a wide range of materials in various industries, and it usually begins with heterogeneous nucleation on a foreign surface in industrial practice and most other circumstances. Recent studies show that amorphous polymeric substrates are useful in controlling crystallization and selectively producing pharmaceutical polymorphs. In our previous publication, we investigated the possible correlation of the binding affinity of one molecule to key binding sites (local binding), and the possibility of using this binding affinity to guide the selection of polymers promoting heterogeneous nucleation. The studied systems were aspirin binding to four nonporous cross-linked polymers in ethanol-water 38 v% mixture. Cross-linked with divinylbenzene (DVB), these polymers were poly(4-acryloylmorpholine) (PAM), poly(2-carboxyethyl acrylate) (PCEA), poly(4-hydroxylbutyl acrylate) (PHBA), and polystyrene (PS). We discovered that the trend of the magnitudes of the average free energies of binding to the best sites is very similar to that of heterogeneous nucleation activities. This Article aims to investigate whether or not local binding to key sites is the important variable to describe heterogeneous nucleation as opposed to the overall/average binding affinity of molecules to a surface, and to investigate the possibility of using the overall binding affinity to guide the selection of polymers. We used the polymer surfaces generated from our previous study to calculate the overall binding affinity of aspirin molecules to the surface as measured by the preferential interaction coefficients of aspirin (1 m) to these polymers. We discovered that the trend of the average preferential interaction coefficients does not correlate as well to that of heterogeneous nucleation activities as the free energies of binding to the best sites. We also computed the average numbers of aspirin molecules associated with the areas of the surfaces' best binding sites and found that they correlate better to heterogeneous nucleation activities than the average preferential interaction coefficients. These results further support that local binding is indicative of heterogeneous nucleation. Moreover, we found a weak trend of the distance order parameters of the aspirin molecules to be similar that of heterogeneous nucleation activities. Our results from the two-part study suggest the importance of local binding to heterogeneous nucleation as well as the possibility of using the binding affinity to the local area (the free energy of binding to the best site and the number of nucleating molecules associated with the area of the best binding site) and the distance order parameters to guide the selection of polymers.
Collapse
Affiliation(s)
- Surasak Chunsrivirot
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
40
|
Valeriani C, Sanz E, Zaccarelli E, Poon WCK, Cates ME, Pusey PN. Crystallization and aging in hard-sphere glasses. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:194117. [PMID: 21525559 DOI: 10.1088/0953-8984/23/19/194117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report new results from our programme of molecular dynamics simulation of hard-sphere systems, focusing on crystallization and glass formation at high concentrations. First we consider a much larger system than hitherto, N = 86 400 equal-sized particles. The results are similar to those obtained with a smaller system, studied previously, showing conventional nucleation and growth of crystals at concentrations near melting and crossing over to a spinodal-like regime at higher concentrations where the free energy barrier to nucleation appears to be negligible. Second, we investigate the dependence on the initial state of the system. We have devised a Monte Carlo 'constrained aging' method to move the particles in such a way that crystallization is discouraged. After a period of such aging, the standard molecular dynamics programme is run. For a system of N = 3200, we find that constrained aging encourages caging of the particles and slows crystallization somewhat. Nevertheless, both aged and unaged systems crystallize at volume fraction φ = 0.61 whereas neither system shows full crystallization in the duration of the simulation at φ = 0.62, a concentration still significantly below that of random close packing.
Collapse
Affiliation(s)
- C Valeriani
- SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Krzakala F, Zdeborová L. On melting dynamics and the glass transition. I. Glassy aspects of melting dynamics. J Chem Phys 2011; 134:034512. [DOI: 10.1063/1.3506841] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Tóth GI, Tegze G, Pusztai T, Tóth G, Gránásy L. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:364101. [PMID: 21386517 DOI: 10.1088/0953-8984/22/36/364101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model.
Collapse
Affiliation(s)
- Gyula I Tóth
- Research Institute for Solid State Physics and Optics, PO Box 49, H-1525 Budapest, Hungary
| | | | | | | | | |
Collapse
|
43
|
Harrowell P. On the existence of a structural instability in sub-critical crystalline fluctuations in a supercooled liquid. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:364106. [PMID: 21386522 DOI: 10.1088/0953-8984/22/36/364106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The square gradient free energy functional is used to describe the distribution of sub-critical crystalline fluctuations in a supercooled liquid. We show that for any supercooling there exists a cluster radius of 3-4 particle diameters below which the crystalline order is no longer stable. We explore the consequences of this observation.
Collapse
Affiliation(s)
- Peter Harrowell
- School of Chemistry, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
44
|
Ni R, Belli S, van Roij R, Dijkstra M. Glassy dynamics, spinodal fluctuations, and the kinetic limit of nucleation in suspensions of colloidal hard rods. PHYSICAL REVIEW LETTERS 2010; 105:088302. [PMID: 20868134 DOI: 10.1103/physrevlett.105.088302] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Indexed: 05/20/2023]
Abstract
Using simulations we identify three dynamic regimes in supersaturated isotropic fluid states of short hard rods: (i) for moderate supersaturations, we observe nucleation of multilayered crystalline clusters; (ii) at higher supersaturation, we find nucleation of small crystallites which arrange into long-lived locally favored structures that get kinetically arrested; and (iii) at even higher supersaturation, the dynamic arrest is due to the conventional cage-trapping glass transition. For longer rods we find that the formation of the (stable) smectic phase out of a supersaturated isotropic state is strongly suppressed by an isotropic-nematic spinodal instability that causes huge spinodal-like orientation fluctuations with nematic clusters diverging in size. Our results show that glassy dynamics and spinodal instabilities set kinetic limits to nucleation in highly supersaturated hard-rod fluids.
Collapse
Affiliation(s)
- Ran Ni
- Soft Condensed Matter, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | | | | | | |
Collapse
|
45
|
Baidakov VG, Tipeev AO, Bobrov KS, Ionov GV. Crystal nucleation rate isotherms in Lennard-Jones liquids. J Chem Phys 2010; 132:234505. [DOI: 10.1063/1.3439585] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Wedekind J, Chkonia G, Wölk J, Strey R, Reguera D. Crossover from nucleation to spinodal decomposition in a condensing vapor. J Chem Phys 2010; 131:114506. [PMID: 19778128 DOI: 10.1063/1.3204448] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanism controlling the initial step of a phase transition has a tremendous influence on the emerging phase. We study the crossover from a purely nucleation-controlled transition toward spinodal decomposition in a condensing Lennard-Jones vapor using molecular dynamics simulations. We analyze both the kinetics and at the same time the thermodynamics by directly reconstructing the free energy of cluster formation. We estimate the location of the spinodal, which lies at much deeper supersaturations than expected. Moreover, the nucleation barriers we find differ only by a constant from the classical nucleation theory predictions and are in very good agreement with semiempirical scaling relations. In the regime from very small barriers to the spinodal, growth controls the rate of the transition but not its nature because the activation barrier has not yet vanished. Finally, we discuss in detail the influence of the chosen reaction coordinate on the interpretation of such simulation results.
Collapse
Affiliation(s)
- Jan Wedekind
- Departament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
47
|
Saika-Voivod I, Bowles RK, Poole PH. Crystal nucleation in a supercooled liquid with glassy dynamics. PHYSICAL REVIEW LETTERS 2009; 103:225701. [PMID: 20366108 DOI: 10.1103/physrevlett.103.225701] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 10/19/2009] [Indexed: 05/29/2023]
Abstract
In simulations of supercooled, high-density liquid silica we study a range of temperature T in which we find both crystal nucleation as well as the characteristic dynamics of a glass forming liquid, including a breakdown of the Stokes-Einstein relation. We find that the liquid cannot be observed below a homogeneous nucleation limit (HNL) at which the liquid crystallizes faster than it can equilibrate. We show that the HNL would occur at lower T, and perhaps not at all, if the Stokes-Einstein relation were obeyed, and hence that glassy dynamics plays a central role in setting a crystallization limit on the liquid state in this case. We also explore the relation of the HNL to the Kauzmann temperature, and test for spinodal-like effects near the HNL.
Collapse
Affiliation(s)
- Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | | | | |
Collapse
|
48
|
Winter D, Virnau P, Binder K. Heterogeneous nucleation at a wall near a wetting transition: a Monte Carlo test of the classical theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:464118. [PMID: 21715882 DOI: 10.1088/0953-8984/21/46/464118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
While for a slightly supersaturated vapor the free energy barrier ΔF(hom)(*), which needs to be overcome in a homogeneous nucleation event, may be extremely large, nucleation is typically much easier at the walls of the container in which the vapor is located. While no nucleation barrier exists if the walls are wet, for incomplete wetting of the walls, described via a nonzero contact angle Θ, classical theory predicts that nucleation happens through sphere-cap-shaped droplets attracted to the wall, and their formation energy is ΔF(het)(*) = ΔF(hom)(*)f(Θ), with f(Θ) = (1-cosΘ)(2)(2+cosΘ)/4. This prediction is tested through simulations for the simple cubic lattice gas model with nearest-neighbor interactions. The attractive wall is described in terms of a local 'surface field', leading to a critical wetting transition. The variation of the contact angle with the strength of the surface field is determined by using thermodynamic integration methods to obtain the wall free energies which enter Young's equation. Obtaining the chemical potential as a function of the density for a system with periodic boundary conditions (and no walls), the droplet free energy of a spherical droplet in the bulk is obtained for a wide range of droplet radii. Similarly, ΔF(het)(*) is obtained for a system with two parallel walls. We find that the classical theory is fairly accurate if a line tension correction for the contact angle is taken into account.
Collapse
Affiliation(s)
- David Winter
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | | | | |
Collapse
|
49
|
Rutledge GC. Molecular simulation of crystal nucleation in n-octane melts. J Chem Phys 2009; 131:134902. [DOI: 10.1063/1.3240202] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Theoretical study of hierarchical structures and heredity effect of silicon solidifying on carbon nanotube. APPLIED PHYSICS LETTERS 2009; 95:063106. [PMCID: PMC2738735 DOI: 10.1063/1.3200227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/15/2009] [Indexed: 06/06/2023]
Abstract
The growth of silicon atoms at the heterogeneous surface of carbon nanotubes (CNTs) is studied by means of molecular dynamics simulations. The results indicate that silicon atoms are concentrated to form an “annual ring” structure around CNTs. The structures of CNTs have strong correlation with the stacking sequence of silicon atoms. Heredity effect can be clearly observed during the heterogeneous nucleation. The uniform internal potential field around CNTs results in the formation of annual ring structures.
Collapse
|