1
|
Svensson P, Aziz Y, Dornheim T, Azadi S, Hollebon P, Skelt A, Vinko SM, Gregori G. Modeling of warm dense hydrogen via explicit real-time electron dynamics: Dynamic structure factors. Phys Rev E 2024; 110:055205. [PMID: 39690610 DOI: 10.1103/physreve.110.055205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/08/2024] [Indexed: 12/19/2024]
Abstract
We present two methods for computing the dynamic structure factor for warm dense hydrogen without invoking either the Born-Oppenheimer approximation or the Chihara decomposition, by employing a wave-packet description that resolves the electron dynamics during ion evolution. First, a semiclassical method is discussed, which is corrected based on known quantum constraints, and second, a direct computation of the density response function within the molecular dynamics. The wave-packet models are compared to PIMC and DFT-MD for the static and low-frequency behavior. For the high-frequency behavior the models recover the expected behavior in the limits of small and large momentum transfers and show the characteristic flattening of the plasmon dispersion for intermediate momentum transfers due to interactions, in agreement with commonly used models for x-ray Thomson scattering. By modeling the electrons and ions on an equal footing, both the ion and free electron part of the spectrum can now be treated within a single framework where we simultaneously resolve the ion-acoustic and plasmon mode, with a self-consistent description of collisions and screening.
Collapse
Affiliation(s)
| | - Yusuf Aziz
- AWE, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| | | | | | | | - Amy Skelt
- AWE, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| | | | | |
Collapse
|
2
|
Svensson P, Campbell T, Graziani F, Moldabekov Z, Lyu N, Batista VS, Richardson S, Vinko SM, Gregori G. Development of a new quantum trajectory molecular dynamics framework. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220325. [PMID: 37393934 PMCID: PMC10315217 DOI: 10.1098/rsta.2022.0325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 07/04/2023]
Abstract
An extension to the wave packet description of quantum plasmas is presented, where the wave packet can be elongated in arbitrary directions. A generalized Ewald summation is constructed for the wave packet models accounting for long-range Coulomb interactions and fermionic effects are approximated by purpose-built Pauli potentials, self-consistent with the wave packets used. We demonstrate its numerical implementation with good parallel support and close to linear scaling in particle number, used for comparisons with the more common wave packet employing isotropic states. Ground state and thermal properties are compared between the models with differences occurring primarily in the electronic subsystem. Especially, the electrical conductivity of dense hydrogen is investigated where a 15% increase in DC conductivity can be seen in our wave packet model compared with other models. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
- Pontus Svensson
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Thomas Campbell
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Frank Graziani
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Zhandos Moldabekov
- Center of Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Yale Quantum Institute, Yale University, New Haven, CT 06511, USA
| | | | - Sam M Vinko
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Gianluca Gregori
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
3
|
Real-time hydrogen molecular dynamics satisfying the nuclear spin statistics of a quantum rotor. Commun Chem 2022; 5:168. [PMID: 36697851 PMCID: PMC9814564 DOI: 10.1038/s42004-022-00788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Apparent presence of the nuclear-spin species of a hydrogen molecule, para-hydrogen and ortho-hydrogen, associated with the quantum rotation is a manifestation of the nuclear quantum nature of hydrogen, governing not only molecular structures but also physical and chemical properties of hydrogen molecules. It has been a great challenge to observe and calculate real-time dynamics of such molecularized fermions. Here, we developed the non-empirical quantum molecular dynamics method that enables real-time molecular dynamics simulations of hydrogen molecules satisfying the nuclear spin statistics of the quantum rotor. While reproducing the species-dependent quantum rotational energy, population ratio, specific heat, and H-H bond length and frequency, we found that their translational, orientational and vibrational dynamics becomes accelerated with the higher rotational excitation, concluding that the nuclear quantum rotation stemmed from the nuclear spin statistics can induce various kinds of dynamics and reactions intrinsic to each hydrogen species.
Collapse
|
4
|
Bertolini S, Jacob T. Valence energy correction for electron reactive force field. J Comput Chem 2022; 43:870-878. [PMID: 35319099 DOI: 10.1002/jcc.26844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/19/2022] [Accepted: 03/02/2022] [Indexed: 11/07/2022]
Abstract
Reactive force fields (ReaxFF) are a classical method to describe material properties based on a bond-order formalism, that allows bond dissociation and consequently investigations of reactive systems. Semiclassical treatment of electrons was introduced within ReaxFF simulations, better known as electron reactive force fields (eReaxFF), to explicitly treat electrons as spherical Gaussian waves. In the original version of eReaxFF, the electrons and electron-holes can lead to changes in both the bond energy and the Coulomb energy of the system. In the present study, the method was modified to allow an electron to modify the valence energy, therefore, permitting that the electron's presence modifies the three-body interactions, affecting the angle among three atoms. When a reaction path involving electron transfer is more sensitive to the geometric configuration of the molecules, corrections in the angular structure in the presence of electrons become more relevant; in this case, bond dissociation may not be enough to describe a reaction path. Consequently, the application of the extended eReaxFF method developed in this work should provide an improved description of a reaction path. As a first demonstration this semiclassical force field was parametrized for hydrogen and oxygen interactions, including water and water's ions. With the modified methodology both the overall accuracy of the force field but also the description of the angles within the molecules in presence of electrons could be improved.
Collapse
Affiliation(s)
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Ulm, Germany
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
5
|
Lavrinenko Y, Levashov PR, Minakov DV, Morozov IV, Valuev IA. Equilibrium properties of warm dense deuterium calculated by the wave packet molecular dynamics and density functional theory method. Phys Rev E 2021; 104:045304. [PMID: 34781451 DOI: 10.1103/physreve.104.045304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 11/07/2022]
Abstract
A joint simulation method based on the wave packet molecular dynamics and density functional theory (WPMD-DFT) is applied to study warm dense deuterium (nonideal deuterium plasmas). This method was developed recently as an extension of the wave packet molecular dynamics (WPMD) in which the equations of motion are solved simultaneously for classical ions and semiclassical electrons represented as Gaussian wave packets. Compared to the classical molecular dynamics and WPMD simulations, the method of WPMD-DFT provides a more accurate representation of quantum effects such as electron-ion coupling and electron degeneracy. It allows studying nonadiabatic dynamics of electrons and ions in equilibrium and nonequilibrium states while being more accurate and efficient at high densities than WPMD and classical molecular dynamics. In the paper, we discuss particular features of the method such as special boundary conditions and the procedure of isentrope calculation as well as the results obtained by WPMD-DFT for the shock-compressed deuterium. The compression isentrope and principal Hugoniot curves obtained by WPMD-DFT are compared with available experimental data and other simulation approaches to validate the method. It opens up a possibility of further application of the method to study nonequilibrium states and relaxation processes.
Collapse
Affiliation(s)
- Yaroslav Lavrinenko
- Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow 125412, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Pavel R Levashov
- Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow 125412, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Dmitry V Minakov
- Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow 125412, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Igor V Morozov
- Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow 125412, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Ilya A Valuev
- Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow 125412, Russia
| |
Collapse
|
6
|
An Investigation into the Approximations Used in Wave Packet Molecular Dynamics for the Study of Warm Dense Matter. PLASMA 2021. [DOI: 10.3390/plasma4020020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wave packet molecular dynamics (WPMD) has recently received a lot of attention as a computationally fast tool with which to study dynamical processes in warm dense matter beyond the Born–Oppenheimer approximation. These techniques, typically, employ many approximations to achieve computational efficiency while implementing semi-empirical scaling parameters to retain accuracy. We investigated three of the main approximations ubiquitous to WPMD: a restricted basis set, approximations to exchange, and the lack of correlation. We examined each of these approximations in regard to atomic and molecular hydrogen in addition to a dense hydrogen plasma. We found that the biggest improvement to WPMD comes from combining a two-Gaussian basis with a semi-empirical correction based on the valence-bond wave function. A single parameter scales this correction to match experimental pressures of dense hydrogen. Ultimately, we found that semi-empirical scaling parameters are necessary to correct for the main approximations in WPMD. However, reducing the scaling parameters for more ab-initio terms gives more accurate results and displays the underlying physics more readily.
Collapse
|
7
|
Steffen W, Kull HJ. Relaxation of plasma waves in Fermi-degenerate quantum plasmas. Phys Rev E 2016; 93:033207. [PMID: 27078475 DOI: 10.1103/physreve.93.033207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 11/07/2022]
Abstract
Plasma waves in a Fermi-degenerate quantum plasma are studied in the framework of the Vlasov-Poisson self-consistent-field theory. A complete time-dependent analytical solution of the initial-value problem is obtained for a multistream model both by stationary-wave and Laplace-transform methods. In the continuum limit, the excitation spectrum can be expressed by the imaginary part of the response function to the initial perturbations. The relaxation of plasma waves is discussed for one-dimensional systems with both Fermi and Maxwellian statistics. Apart from the usual exponential Landau damping, regimes of sub- and superexponential damping can be identified due to the phase relaxation of single-particle excitations. In addition, beat waves and echoes are discussed.
Collapse
Affiliation(s)
- W Steffen
- Institute for Theory of Statistical Physics, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
| | - H-J Kull
- Institute for Theory of Statistical Physics, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
| |
Collapse
|
8
|
Grabowski PE, Markmann A, Morozov IV, Valuev IA, Fichtl CA, Richards DF, Batista VS, Graziani FR, Murillo MS. Wave packet spreading and localization in electron-nuclear scattering. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:063104. [PMID: 23848786 DOI: 10.1103/physreve.87.063104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Indexed: 06/02/2023]
Abstract
The wave packet molecular dynamics (WPMD) method provides a variational approximation to the solution of the time-dependent Schrödinger equation. Its application in the field of high-temperature dense plasmas has yielded diverging electron width (spreading), which results in diminishing electron-nuclear interactions. Electron spreading has previously been ascribed to a shortcoming of the WPMD method and has been counteracted by various heuristic additions to the models used. We employ more accurate methods to determine if spreading continues to be predicted by them and how WPMD can be improved. A scattering process involving a single dynamic electron interacting with a periodic array of statically screened protons is used as a model problem for comparison. We compare the numerically exact split operator Fourier transform method, the Wigner trajectory method, and the time-dependent variational principle (TDVP). Within the framework of the TDVP, we use the standard variational form of WPMD, the single Gaussian wave packet (WP), as well as a sum of Gaussian WPs, as in the split WP method. Wave packet spreading is predicted by all methods, so it is not the source of the unphysical diminishing of electron-nuclear interactions in WPMD at high temperatures. Instead, the Gaussian WP's inability to correctly reproduce breakup of the electron's probability density into localized density near the protons is responsible for the deviation from more accurate predictions. Extensions of WPMD must include a mechanism for breakup to occur in order to yield dynamics that lead to accurate electron densities.
Collapse
Affiliation(s)
- Paul E Grabowski
- Computational Physics and Methods Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Intermolecular diatomic energies of a hydrogen dimer with non-Born–Oppenheimer nuclear and electron wave packets. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.02.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Jaramillo-Botero A, Su J, Qi A, Goddard WA. Large-scale, long-term nonadiabatic electron molecular dynamics for describing material properties and phenomena in extreme environments. J Comput Chem 2010; 32:497-512. [DOI: 10.1002/jcc.21637] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/14/2010] [Accepted: 06/23/2010] [Indexed: 01/19/2023]
|
11
|
Redmer R, Holst B. Metal–Insulator Transition in Dense Hydrogen. METAL-TO-NONMETAL TRANSITIONS 2010. [DOI: 10.1007/978-3-642-03953-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Su JT, Goddard WA. The dynamics of highly excited electronic systems: Applications of the electron force field. J Chem Phys 2009; 131:244501. [DOI: 10.1063/1.3272671] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Mechanisms of Auger-induced chemistry derived from wave packet dynamics. Proc Natl Acad Sci U S A 2009; 106:1001-5. [PMID: 19164568 DOI: 10.1073/pnas.0812087106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand how core ionization and subsequent Auger decay lead to bond breaking in large systems, we simulate the wave packet dynamics of electrons in the hydrogenated diamond nanoparticle C(197)H(112). We find that surface core ionizations cause emission of carbon fragments and protons through a direct Auger mechanism, whereas deeper core ionizations cause hydrides to be emitted from the surface via remote heating, consistent with results from photon-stimulated desorption experiments [Hoffman A, Laikhtman A, (2006) J Phys Condens Mater 18:S1517-S1546]. This demonstrates that it is feasible to study the chemistry of highly excited large-scale systems using simulation and analysis tools comparable in simplicity to those used for classical molecular dynamics.
Collapse
|
14
|
Hyeon-Deuk K, Ando K. Semiquantum molecular dynamics simulation of liquid water by time-dependent Hartree approach. J Chem Phys 2009; 131:064501. [DOI: 10.1063/1.3200937] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Grinenko A, Gericke DO, Glenzer SH, Vorberger J. Probing the hydrogen melting line at high pressures by dynamic compression. PHYSICAL REVIEW LETTERS 2008; 101:194801. [PMID: 19113275 DOI: 10.1103/physrevlett.101.194801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Indexed: 05/27/2023]
Abstract
We investigate the capabilities of dynamic compression by intense heavy ion beams to yield information about the high pressure phases of hydrogen. Employing ab initio simulations and experimental data, a new wide range equation of state for hydrogen is constructed. The results show that the melting line up to its maximum as well as the transition from molecular fluids to fully ionized plasmas can be tested with the beam parameters soon to be available. We demonstrate that x-ray scattering can distinguish between phases and dissociation states.
Collapse
Affiliation(s)
- A Grinenko
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | |
Collapse
|