1
|
Herrero C, Berthier L. Direct Numerical Analysis of Dynamic Facilitation in Glass-Forming Liquids. PHYSICAL REVIEW LETTERS 2024; 132:258201. [PMID: 38996241 DOI: 10.1103/physrevlett.132.258201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/21/2024] [Indexed: 07/14/2024]
Abstract
We propose a computational strategy to quantify the temperature evolution of the timescales and length scales over which dynamic facilitation affects the relaxation dynamics of glass-forming liquids at low temperatures, which requires no assumption about the nature of the dynamics. In two glass models, we find that dynamic facilitation depends strongly on temperature, leading to a subdiffusive spreading of relaxation events which we characterize using a temperature-dependent dynamic exponent. We also establish that this temperature evolution represents a major contribution to the increase of the structural relaxation time.
Collapse
|
2
|
Gavazzoni C, Brito C, Wyart M. Testing Theories of the Glass Transition with the Same Liquid but Many Kinetic Rules. PHYSICAL REVIEW LETTERS 2024; 132:248201. [PMID: 38949336 DOI: 10.1103/physrevlett.132.248201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/23/2024] [Indexed: 07/02/2024]
Abstract
We study the glass transition by exploring a broad class of kinetic rules that can significantly modify the normal dynamics of supercooled liquids while maintaining thermal equilibrium. Beyond the usual dynamics of liquids, this class includes dynamics in which a fraction (1-f_{R}) of the particles can perform pairwise exchange or "swap moves," while a fraction f_{P} of the particles can move only along restricted directions. We find that (i) the location of the glass transition varies greatly but smoothly as f_{P} and f_{R} change and (ii) it is governed by a linear combination of f_{P} and f_{R}. (iii) Dynamical heterogeneities (DHs) are not governed by the static structure of the material; their magnitude correlates instead with the relaxation time. (iv) We show that a recent theory for temporal growth of DHs based on thermal avalanches holds quantitatively throughout the (f_{R},f_{P}) diagram. These observations are negative items for some existing theories of the glass transition, particularly those reliant on growing thermodynamic order or locally favored structure, and open new avenues to test other approaches, as we illustrate.
Collapse
Affiliation(s)
- Cristina Gavazzoni
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina Brito
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
| | - Matthieu Wyart
- Institute of Physics, Ecole Polytechnique Federale de Lausanne, 729 BSP UNIL, 1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Pica Ciamarra M, Ji W, Wyart M. Local vs. cooperative: Unraveling glass transition mechanisms with SEER. Proc Natl Acad Sci U S A 2024; 121:e2400611121. [PMID: 38787876 PMCID: PMC11145278 DOI: 10.1073/pnas.2400611121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Which phenomenon slows down the dynamics in supercooled liquids and turns them into glasses is a long-standing question of condensed matter. Most popular theories posit that as the temperature decreases, many events must occur in a coordinated fashion on a growing length scale for relaxation to occur. Instead, other approaches consider that local barriers associated with the elementary rearrangement of a few particles or "excitations" govern the dynamics. To resolve this conundrum, our central result is to introduce an algorithm, Systematic Excitation ExtRaction, which can systematically extract hundreds of excitations and their energy from any given configuration. We also provide a measurement of the activation energy, characterizing the liquid dynamics, based on fast quenching and reheating. We use these two methods in a popular liquid model of polydisperse particles. Such polydisperse models are known to capture the hallmarks of the glass transition and can be equilibrated efficiently up to millisecond time scales. The analysis reveals that cooperative effects do not control the fragility of such liquids: the change of energy of local barriers determines the change of activation energy. More generally, these methods can now be used to measure the degree of cooperativity of any liquid model.
Collapse
Affiliation(s)
- Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
- Consiglio Nazionale delle Ricerce, CNR-SPIN, NapoliI-80126, Italy
| | - Wencheng Ji
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot76100, Israel
| | - Matthieu Wyart
- Institute of Physics, École Polytechnique Fédérale de Lausanne, LausanneCH-1015, Switzerland
| |
Collapse
|
4
|
Herrero C, Ediger MD, Berthier L. Front propagation in ultrastable glasses is dynamically heterogeneous. J Chem Phys 2023; 159:114504. [PMID: 37724735 DOI: 10.1063/5.0168506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
Upon heating, ultrastable glassy films transform into liquids via a propagating equilibration front, resembling the heterogeneous melting of crystals. A microscopic understanding of this robust phenomenology is, however, lacking because experimental resolution is limited. We simulate the heterogeneous transformation kinetics of ultrastable configurations prepared using the swap Monte Carlo algorithm, thus allowing a direct comparison with experiments. We resolve the liquid-glass interface both in space and in time as well as the underlying particle motion responsible for its propagation. We perform a detailed statistical analysis of the interface geometry and kinetics over a broad range of temperatures. We show that the dynamic heterogeneity of the bulk liquid is passed on to the front that propagates heterogeneously in space and intermittently in time. This observation allows us to relate the averaged front velocity to the equilibrium diffusion coefficient of the liquid. We suggest that an experimental characterization of the interface geometry during the heterogeneous devitrification of ultrastable glassy films could provide direct experimental access to the long-sought characteristic length scale of dynamic heterogeneity in bulk supercooled liquids.
Collapse
Affiliation(s)
- Cecilia Herrero
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Mark D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
5
|
Jung G, Biroli G, Berthier L. Predicting Dynamic Heterogeneity in Glass-Forming Liquids by Physics-Inspired Machine Learning. PHYSICAL REVIEW LETTERS 2023; 130:238202. [PMID: 37354408 DOI: 10.1103/physrevlett.130.238202] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/07/2023] [Accepted: 05/17/2023] [Indexed: 06/26/2023]
Abstract
We introduce GlassMLP, a machine learning framework using physics-inspired structural input to predict the long-time dynamics in deeply supercooled liquids. We apply this deep neural network to atomistic models in 2D and 3D. Its performance is better than the state of the art while being more parsimonious in terms of training data and fitting parameters. GlassMLP quantitatively predicts four-point dynamic correlations and the geometry of dynamic heterogeneity. Transferability across system sizes allows us to efficiently probe the temperature evolution of spatial dynamic correlations, revealing a profound change with temperature in the geometry of rearranging regions.
Collapse
Affiliation(s)
- Gerhard Jung
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Giulio Biroli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
6
|
Ozawa M, Biroli G. Elasticity, Facilitation, and Dynamic Heterogeneity in Glass-Forming Liquids. PHYSICAL REVIEW LETTERS 2023; 130:138201. [PMID: 37067329 DOI: 10.1103/physrevlett.130.138201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
We study the role of elasticity-induced facilitation on the dynamics of glass-forming liquids by a coarse-grained two-dimensional model in which local relaxation events, taking place by thermal activation, can trigger new relaxations by long-range elastically mediated interactions. By simulations and an analytical theory, we show that the model reproduces the main salient facts associated with dynamic heterogeneity and offers a mechanism to explain the emergence of dynamical correlations at the glass transition. We also discuss how it can be generalized and combined with current theories.
Collapse
Affiliation(s)
- Misaki Ozawa
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Giulio Biroli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| |
Collapse
|
7
|
Laudicina CCL, Luo C, Miyazaki K, Janssen LMC. Dynamical susceptibilities near ideal glass transitions. Phys Rev E 2022; 106:064136. [PMID: 36671198 DOI: 10.1103/physreve.106.064136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Building on the recently derived inhomogeneous mode-coupling theory, we extend the generalized mode-coupling theory of supercooled liquids to inhomogeneous environments. This provides a first-principles-based, systematic, and rigorous way of deriving high-point dynamical susceptibilities from variations of the many-body dynamic structure factors with respect to their conjugate field. This framework allows for a fully microscopic possibility to probe for collective relaxation mechanisms in supercooled liquids near the mode-coupling glass transition. The behavior of these dynamical susceptibilities is then studied in the context of simplified self-consistent relaxation models.
Collapse
Affiliation(s)
- Corentin C L Laudicina
- Soft Matter & Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Chengjie Luo
- Soft Matter & Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | | | - Liesbeth M C Janssen
- Soft Matter & Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
8
|
Novikov VN, Sokolov AP. Temperature Dependence of Structural Relaxation in Glass-Forming Liquids and Polymers. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1101. [PMID: 36010765 PMCID: PMC9407199 DOI: 10.3390/e24081101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Understanding the microscopic mechanism of the transition of glass remains one of the most challenging topics in Condensed Matter Physics. What controls the sharp slowing down of molecular motion upon approaching the glass transition temperature Tg, whether there is an underlying thermodynamic transition at some finite temperature below Tg, what the role of cooperativity and heterogeneity are, and many other questions continue to be topics of active discussions. This review focuses on the mechanisms that control the steepness of the temperature dependence of structural relaxation (fragility) in glass-forming liquids. We present a brief overview of the basic theoretical models and their experimental tests, analyzing their predictions for fragility and emphasizing the successes and failures of the models. Special attention is focused on the connection of fast dynamics on picosecond time scales to the behavior of structural relaxation on much longer time scales. A separate section discusses the specific case of polymeric glass-forming liquids, which usually have extremely high fragility. We emphasize the apparent difference between the glass transitions in polymers and small molecules. We also discuss the possible role of quantum effects in the glass transition of light molecules and highlight the recent discovery of the unusually low fragility of water. At the end, we formulate the major challenges and questions remaining in this field.
Collapse
Affiliation(s)
- Vladimir N. Novikov
- Institute of Automation and Electrometry, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexei P. Sokolov
- Department of Chemistry and Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, TN 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
9
|
Nishikawa Y, Ikeda A, Berthier L. Collective dynamics in a glass-former with Mari-Kurchan interactions. J Chem Phys 2022; 156:244503. [DOI: 10.1063/5.0096356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We numerically study the equilibrium relaxation dynamics of a two-dimensional Mari-Kurchan glass model. The tree-like structure of particle interactions forbids both non-trivial structural motifs and the emergence of a complex free-energy landscape leading to a thermodynamic glass transition, while the finite-dimensional nature of the model prevents the existence of a mode-coupling singularity. Nevertheless, the equilibrium relaxation dynamics is shown to be in excellent agreement with simulations performed in conventional glass-formers. Averaged time-correlation functions display a phenomenology typical of supercooled liquids, including the emergence of an excess signal in relaxation spectra at intermediate frequencies. We show that this evolution is accompanied by strong signatures of collective and heterogeneous dynamics which cannot be interpreted in terms of single particle hopping and emerge from dynamic facilitation. Our study demonstrates that an off-lattice interacting particle model with extremely simple structural correlations displays quantitatively realistic glassy dynamics.
Collapse
Affiliation(s)
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, University of Tokyo, Japan
| | | |
Collapse
|
10
|
Moch K, Münzner P, Böhmer R, Gainaru C. Molecular Cross-correlations Govern Structural Rearrangements in a Nonassociating Polar Glass Former. PHYSICAL REVIEW LETTERS 2022; 128:228001. [PMID: 35714246 DOI: 10.1103/physrevlett.128.228001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 01/22/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Self- and cross-correlation dynamics of deeply supercooled liquids were recently identified using photon correlation spectroscopy on the one hand and dielectric investigations on the other. These results fueled a controversial discussion whether the "generic" response identified by photon correlation spectroscopy, or rather the nonuniversal dielectric response, reflect the liquid's structural relaxation. The present study employs physical aging and oscillatory shear rheology to directly access the structural relaxation of a nonassociating glass-forming liquid and reveals that collective equilibrium fluctuations of simple liquids and not single-particle dynamics govern their structural relaxation. The present results thus challenge recent views that the glassy response of polar supercooled liquids can generically be decomposed into a Debye-type, supramolecular response and a single-particle dynamics with the latter reflecting the "true" structural relaxation. Furthermore, the current findings underscore the pivotal role dielectric spectroscopy plays in glass science as one of the rare molecular-level reorientation techniques that senses dynamical cooperativity directly.
Collapse
Affiliation(s)
- K Moch
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - P Münzner
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - R Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - C Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
11
|
Guiselin B, Tarjus G, Berthier L. Static self-induced heterogeneity in glass-forming liquids: Overlap as a microscope. J Chem Phys 2022; 156:194503. [PMID: 35597648 DOI: 10.1063/5.0086517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose and numerically implement a local probe of the static self-induced heterogeneity characterizing glass-forming liquids. This method relies on the equilibrium statistics of the overlap between pairs of configurations measured in mesoscopic cavities with unconstrained boundaries. By systematically changing the location of the probed cavity, we directly detect spatial variations of the overlap fluctuations. We provide a detailed analysis of the statistics of a local estimate of the configurational entropy, and we infer an estimate of the surface tension between amorphous states, ingredients that are both at the basis of the random first-order transition theory of glass formation. Our results represent the first direct attempt to visualize and quantify the self-induced heterogeneity underpinning the thermodynamics of glass formation. They pave the way for the development of coarse-grained effective theories and for a direct assessment of the role of thermodynamics in the activated dynamics of deeply supercooled liquids.
Collapse
Affiliation(s)
- Benjamin Guiselin
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Gilles Tarjus
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, F-75005 Paris, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| |
Collapse
|
12
|
Ivanov MY, Surovtsev NV, Fedin MV. Ionic liquid glasses: properties and applications. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Xia J, Guo H. Construction of a quantitative relation between structural relaxation and dynamic heterogeneity by vibrational dynamics in glass-forming liquids and polymers. SOFT MATTER 2021; 17:10753-10764. [PMID: 34792079 DOI: 10.1039/d1sm01049b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The structural relaxation slows down drastically upon approaching the glass transition, accompanied by the significant growth of dynamic heterogeneity. The fundamental question of elusiveness and interest is whether there exists an underlying quantitative relationship between structural relaxation and dynamic heterogeneity. Here, we reveal that b̃ which is related to the reduced mean square displacements to overcome the energy barriers of activated jumps, instead of the kinetic fragility m, is the genuine key parameter connecting dynamic heterogeneity with structural relaxation for varying types of glass formers. Furthermore, based on the dependence of dynamic heterogeneity on the Debye-Waller factor we obtained a direct quantitative relation between dynamic heterogeneity and structural relaxation is built for different glass-forming liquids. More importantly, a scaling collapse of structural relaxation and dynamic heterogeneity is achieved by the important parameter b̃. These results are of fundamental and critical importance for developing a unified theory of glassy dynamics.
Collapse
Affiliation(s)
- Jianshe Xia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Guo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Raistrick T, Reynolds M, Gleeson HF, Mattsson J. Influence of Liquid Crystallinity and Mechanical Deformation on the Molecular Relaxations of an Auxetic Liquid Crystal Elastomer. Molecules 2021; 26:7313. [PMID: 34885896 PMCID: PMC8659252 DOI: 10.3390/molecules26237313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Liquid Crystal Elastomers (LCEs) combine the anisotropic ordering of liquid crystals with the elastic properties of elastomers, providing unique physical properties, such as stimuli responsiveness and a recently discovered molecular auxetic response. Here, we determine how the molecular relaxation dynamics in an acrylate LCE are affected by its phase using broadband dielectric relaxation spectroscopy, calorimetry and rheology. Our LCE is an excellent model system since it exhibits a molecular auxetic response in its nematic state, and chemically identical nematic or isotropic samples can be prepared by cross-linking. We find that the glass transition temperatures (Tg) and dynamic fragilities are similar in both phases, and the T-dependence of the α relaxation shows a crossover at the same T* for both phases. However, for T>T*, the behavior becomes Arrhenius for the nematic LCE, but only more Arrhenius-like for the isotropic sample. We provide evidence that the latter behavior is related to the existence of pre-transitional nematic fluctuations in the isotropic LCE, which are locked in by polymerization. The role of applied strain on the relaxation dynamics and mechanical response of the LCE is investigated; this is particularly important since the molecular auxetic response is linked to a mechanical Fréedericksz transition that is not fully understood. We demonstrate that the complex Young's modulus and the α relaxation time remain relatively unchanged for small deformations, whereas for strains for which the auxetic response is achieved, significant increases are observed. We suggest that the observed molecular auxetic response is coupled to the strain-induced out-of-plane rotation of the mesogen units, in turn driven by the increasing constraints on polymer configurations, as reflected in increasing elastic moduli and α relaxation times; this is consistent with our recent results showing that the auxetic response coincides with the emergence of biaxial order.
Collapse
Affiliation(s)
| | | | | | - Johan Mattsson
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; (T.R.); (M.R.); (H.F.G.)
| |
Collapse
|
15
|
Balbuena C, Mariel Gianetti M, Rodolfo Soulé E. A structural study and its relation to dynamic heterogeneity in a polymer glass former. SOFT MATTER 2021; 17:3503-3512. [PMID: 33662077 DOI: 10.1039/d0sm02065f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The relationship between structure and dynamical behavior (super-Arrhenius temperature dependence of relaxation time accompanied by heterogeneous dynamics) in glassy materials remains an open issue in the physics of condensed matter. The question of whether this dynamic phenomena have a thermodynamic origin or not still remains unanswered. In this work we analyze several dynamic and structural parameters in a polymer glass-former by means of molecular dynamics simulations. The results obtained in this work indicate that the structure does affect dynamic behavior, whereas structural conditioning becomes noticeable below the temperature at which the non-Arrhenius behavior manifests and increases as the system approaches the glass transition temperature. Moreover, we observed that the short-range order parameters are related to local dynamics at the single-particle level. These results reinforce the idea of a connection between the structure and dynamics and that could indicate the thermodynamic nature of glass transition.
Collapse
Affiliation(s)
- Cristian Balbuena
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), J. B. Justo 4302, 7600 Mar del Plata, Argentina.
| | | | | |
Collapse
|
16
|
Ghoshal D, Joy A. Connecting relaxation time to a dynamical length scale in athermal active glass formers. Phys Rev E 2021; 102:062605. [PMID: 33465951 DOI: 10.1103/physreve.102.062605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/17/2020] [Indexed: 11/07/2022]
Abstract
Supercooled liquids display dynamics that are inherently heterogeneous in space. This essentially means that at temperatures below the melting point, particle dynamics in certain regions of the liquid can be orders of magnitude faster than other regions. Often dubbed dynamical heterogeneity, this behavior has fascinated researchers involved in the study of glass transition for over two decades. A fundamentally important question in all glass transition studies is whether one can connect the growing relaxation time to a concomitantly growing length scale. In this paper, we go beyond the realm of ordinary glass forming liquids and study the origin of a growing dynamical length scale ξ in a self-propelled "active" glass former. This length scale, which is constructed using structural correlations, agrees well with the average size of the clusters of slow-moving particles that are formed as the liquid becomes spatially heterogeneous. We further report that the concomitantly growing α-relaxation time exhibits a simple scaling law, τ_{α}∼exp(μξ/T_{eff}), with μ as an effective chemical potential, T_{eff} as the effective temperature, and μξ as the growing free energy barrier for cluster rearrangements. The findings of our study are valid over four decades of persistence times, and hence they could be very useful in understanding the slow dynamics of a generic active liquid such as an active colloidal suspension, or a self-propelled granular medium.
Collapse
Affiliation(s)
- Dipanwita Ghoshal
- Department of Physics, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Ashwin Joy
- Department of Physics, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
17
|
Zheng Z, Ni R, Wang Y, Han Y. Translational and rotational critical-like behaviors in the glass transition of colloidal ellipsoid monolayers. SCIENCE ADVANCES 2021; 7:7/3/eabd1958. [PMID: 33523902 PMCID: PMC7810379 DOI: 10.1126/sciadv.abd1958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Critical-like behaviors have been found in translational degrees of freedom near the glass transition of spherical particle systems mainly with local polycrystalline structures, but it is not clear if criticality exists in more general glassy systems composed of nonspherical particles without crystalline structures. Here, through experiments and simulations, we show critical-like behaviors in both translational and rotational degrees of freedom in monolayers of monodisperse colloidal ellipsoids in the absence of crystalline orders. We find rich features of the Ising-like criticality in structure and slow dynamics at the ideal glass transition point ϕ0, showing the thermodynamic nature of glass transition at ϕ0 A dynamic criticality is found at the mode-coupling critical point ϕc for the fast-moving clusters whose critical exponents increase linearly with fragility, reflecting a dynamic glass transition. These results cast light on the glass transition and explain the mystery that the dynamic correlation lengths diverge at two different temperatures.
Collapse
Affiliation(s)
- Zhongyu Zheng
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ran Ni
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Yuren Wang
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yilong Han
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
18
|
Grzybowska K, Grzybowski A, Knapik-Kowalczuk J, Chmiel K, Woyna-Orlewicz K, Szafraniec-Szczęsny J, Antosik-Rogóż A, Jachowicz R, Kowalska-Szojda K, Lodowski P, Paluch M. Molecular Dynamics and Physical Stability of Ibuprofen in Binary Mixtures with an Acetylated Derivative of Maltose. Mol Pharm 2020; 17:3087-3105. [PMID: 32584584 PMCID: PMC7467776 DOI: 10.1021/acs.molpharmaceut.0c00517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this paper, we explore the strategy increasingly used to improve the bioavailability of poorly water-soluble crystalline drugs by formulating their amorphous solid dispersions. We focus on the potential application of a low molecular weight excipient octaacetyl-maltose (acMAL) to prepare physically stable amorphous solid dispersions with ibuprofen (IBU) aimed at enhancing water solubility of the drug compared to that of its crystalline counterpart. We thoroughly investigate global and local molecular dynamics, thermal properties, and physical stability of the IBU+acMAL binary systems by using broadband dielectric spectroscopy and differential scanning calorimetry as well as test their water solubility and dissolution rate. The obtained results are extensively discussed by analyzing several factors considered to affect the physical stability of amorphous systems, including those related to the global mobility, such as plasticization/antiplasticization effects, the activation energy, fragility parameter, and the number of dynamically correlated molecules as well as specific intermolecular interactions like hydrogen bonds, supporting the latter by density functional theory calculations. The observations made for the IBU+acMAL binary systems and drawn recommendations give a better insight into our understanding of molecular mechanisms governing the physical stability of amorphous solid dispersions.
Collapse
Affiliation(s)
- Katarzyna Grzybowska
- Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Andrzej Grzybowski
- Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Justyna Knapik-Kowalczuk
- Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Krzysztof Chmiel
- Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Krzysztof Woyna-Orlewicz
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Joanna Szafraniec-Szczęsny
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agata Antosik-Rogóż
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Renata Jachowicz
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kowalska-Szojda
- Institute of Chemistry, University of Silesia in Katowice, Szkolna Street 9, 40-006 Katowice, Poland
| | - Piotr Lodowski
- Institute of Chemistry, University of Silesia in Katowice, Szkolna Street 9, 40-006 Katowice, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
19
|
Holt AP, Fragiadakis D, Roland CM. Dynamic Properties of Supercooled Chlorinated Biphenyls. J Phys Chem B 2020; 124:5073-5078. [PMID: 32432473 DOI: 10.1021/acs.jpcb.0c02601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A study of the dynamics of a series of biphenyl compounds having varying chlorine levels was carried out. Increasing the chlorine content increases the glass transition temperature and makes the dynamics substantially more sensitive to density changes. Nonetheless, in the vicinity of their respective glass transitions, the different liquids display very similar extents of dynamic correlation and dynamic heterogeneity. The slight narrowing of the relaxation peak with increasing chlorine follows the general trend of the effect of increasing molecular polarity. This relationship between the peak breadth and dipole moment was reproduced in molecular dynamics simulations of a simplified model of the Aroclor molecule.
Collapse
Affiliation(s)
- A P Holt
- Chemistry Division, Code 6105, Naval Research Laboratory, Washington, D.C. 20375-4032, United States
| | - D Fragiadakis
- Chemistry Division, Code 6105, Naval Research Laboratory, Washington, D.C. 20375-4032, United States
| | - C M Roland
- Chemistry Division, Code 6105, Naval Research Laboratory, Washington, D.C. 20375-4032, United States
| |
Collapse
|
20
|
Alesadi A, Xia W. Understanding the Role of Cohesive Interaction in Mechanical Behavior of a Glassy Polymer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Amirhadi Alesadi
- Department of Civil & Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Wenjie Xia
- Department of Civil & Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
21
|
Cheng S, Sokolov AP. Correlation between the temperature evolution of the interfacial region and the growing dynamic cooperativity length scale. J Chem Phys 2020; 152:094904. [PMID: 33480747 DOI: 10.1063/1.5143360] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Alexei P. Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
22
|
Balbuena C, Soulé ER. An alternative approach to evidence the structural conditioning in the dynamic slowdown in a polymer glass-former. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:045401. [PMID: 31577994 DOI: 10.1088/1361-648x/ab4a67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dynamic slowdown of liquids, leading to a breakdown of Arrhenius behavior of relaxation and Stokes-Einstein relationship (SER), as the glass transition is approached, is still not fully understood despite decades of study. They are usually associated to the emergence of dynamic heterogeneity, that is, regions or clusters of particles that have high or low mobilities. But the physical origin of these dynamic heterogeneity, and in particular, the question whether they have a structural origin or they are a purely dynamical phenomenon, is still under debate. In this work we study through molecular dynamics simulations in a polymer model the dynamic slowdown and the breakdown of SER, in connection with dynamic susceptibility calculated for an isoconfigurational ensemble, such that the effects of structure on dynamics can be discriminated. The onset of structure effects on dynamical behavior is found to be coincident with the onset of slow dynamics and SER breakdown.
Collapse
Affiliation(s)
- Cristian Balbuena
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), J. B. Justo 4302, 7600 Mar del Plata, Argentina
| | | |
Collapse
|
23
|
Majka M, Góra PF. Effective one-component model of binary mixture: molecular arrest induced by the spatially correlated stochastic dynamics. Sci Rep 2019; 9:19661. [PMID: 31873077 PMCID: PMC6927984 DOI: 10.1038/s41598-019-54321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
Spatially correlated noise (SCN), i.e. the thermal noise that affects neighbouring particles in a similar manner, is ubiquitous in soft matter systems. In this work, we apply the over-damped SCN-driven Langevin equations as an effective, one-component model of the dynamics in dense binary mixtures. We derive the thermodynamically consistent fluctuation-dissipation relation for SCN to show that it predicts the molecular arrest resembling the glass transition, i.e. the critical slow-down of dynamics in the disordered phases. We show that the mechanism of singular dissipation is embedded in the dissipation matrix, accompanying SCN. We are also able to identify the characteristic length of collective dissipation, which diverges at critical packing. This novel physical quantity conveniently describes the difference between the ergodic and non-ergodic dynamics. The model is fully analytically solvable, one-dimensional and admits arbitrary interactions between the particles. It qualitatively reproduces several different modes of arrested disorder encountered in binary mixtures, including e.g. the re-entrant arrest. The model can be effectively compared to the mode coupling theory.
Collapse
Affiliation(s)
- M Majka
- Jagiellonian University, Marian Smoluchowski Institute of Physics, ul. prof. Stanisława Łojasiewicza 11, 30-348, Kraków, Poland.
| | - P F Góra
- Jagiellonian University, Marian Smoluchowski Institute of Physics, ul. prof. Stanisława Łojasiewicza 11, 30-348, Kraków, Poland
| |
Collapse
|
24
|
Berthier L, Biroli G, Bouchaud JP, Tarjus G. Can the glass transition be explained without a growing static length scale? J Chem Phys 2019; 150:094501. [DOI: 10.1063/1.5086509] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Giulio Biroli
- Institut de physique théorique, Université Paris Saclay, CEA, CNRS, F-91191 Gif-sur-Yvette, France
- Laboratoire de Physique Statistique, École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, 75005 Paris, France
| | | | - Gilles Tarjus
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, 75005 Paris, France
| |
Collapse
|
25
|
Affiliation(s)
- G. P. Johari
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
26
|
Szymoniak P, Madkour S, Schönhals A. Molecular Dynamics of the Asymmetric Blend PVME/PS Revisited by Broadband Dielectric and Specific Heat Spectroscopy: Evidence of Multiple Glassy Dynamics. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02697] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Paulina Szymoniak
- Bundesanstalt für Materialforschung und
-prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Sherif Madkour
- Bundesanstalt für Materialforschung und
-prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und
-prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| |
Collapse
|
27
|
Niss K, Hecksher T. Perspective: Searching for simplicity rather than universality in glass-forming liquids. J Chem Phys 2018; 149:230901. [PMID: 30579292 DOI: 10.1063/1.5048093] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This article gives an overview of experimental results on dynamics in bulk glass-forming molecular liquids. Rather than looking for phenomenology that is universal, in the sense that it is seen in all liquids, the focus is on identifying the basic characteristics, or "stylized facts," of the glass transition problem, i.e., the central observations that a theory of the physics of glass formation should aim to explain in a unified manner.
Collapse
Affiliation(s)
- Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Tina Hecksher
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
28
|
Sebastián N, Contal C, Sánchez-Ferrer A, Pieruccini M. Interplay between structure and relaxation in polyurea networks: the point of view from a novel method of cooperativity analysis of dielectric response. SOFT MATTER 2018; 14:7839-7849. [PMID: 30209502 DOI: 10.1039/c8sm01113c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The influence of structural constraints on the relaxation dynamics of three polyurea networks with a varying degree of crosslinking, has been studied by means of a thorough analysis of broadband dielectric spectroscopy measurements. Two different relaxation processes are observed, namely, a fast process involving the soft poly(propylene oxide) chains, and a slower and much broader process associated with the immediate surroundings of the hard crosslinkers. Microphase separation in soft and hard domains characterizes the systems in the presence of hydrogen bonding. In this case, different confinement conditions are explored by varying the soft chain length; overall, so called "adsorption" effects dominate. With respect to both cooperativity and the rearrangement energy threshold in fast relaxation, it is found that the enhancement of configurational constraints is similar to cooling, but only on qualitative grounds. An upper bound of the hard domains' interface thickness, in which the slow relaxation is believed to take place, is estimated from the analysis of the fast relaxation in the system characterized by the highest degree of confinement, taking into account the results of the structural analysis. Dropping the hydrogen bonding mechanism, phase separation does not occur anymore and the configurational constraints at the ends of the soft chains are reduced, leaving just those imposed by the rigid crosslinkers. This leads to a significant increase in cooperativity on approaching the glass transition, and to a complex behavior that is thoroughly discussed in comparison with those observed in the micro-segregated systems.
Collapse
Affiliation(s)
- Nerea Sebastián
- JoŽef Stefan Institute, Department of Complex Matter - F7, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
29
|
Royall CP, Turci F, Tatsumi S, Russo J, Robinson J. The race to the bottom: approaching the ideal glass? JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:363001. [PMID: 29972145 DOI: 10.1088/1361-648x/aad10a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Key to resolving the scientific challenge of the glass transition is to understand the origin of the massive increase in viscosity of liquids cooled below their melting temperature (avoiding crystallisation). A number of competing and often mutually exclusive theoretical approaches have been advanced to describe this phenomenon. Some posit a bona fide thermodynamic phase to an 'ideal glass', an amorphous state with exceptionally low entropy. Other approaches are built around the concept of the glass transition as a primarily dynamic phenomenon. These fundamentally different interpretations give equally good descriptions of the data available, so it is hard to determine which-if any-is correct. Recently however this situation has begun to change. A consensus has emerged that one powerful means to resolve this longstanding question is to approach the putative thermodynamic transition sufficiently closely, and a number of techniques have emerged to meet this challenge. Here we review the results of some of these new techniques and discuss the implications for the existence-or otherwise-of the thermodynamic transition to an ideal glass.
Collapse
Affiliation(s)
- C Patrick Royall
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom. School of Chemistry, University of Bristol, Cantock Close, Bristol, BS8 1TS, United Kingdom. Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol, BS8 1FD, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Abstract
A statistical mechanical model previously adopted for the analysis of the α-relaxation in structural glass formers is rederived within a general theoretical framework originally developed for systems approaching the ideal glassy state. The interplay between nonexponentiality and cooperativity is reconsidered in the light of energy landscape concepts. The method is used to estimate the cooperativity in orientationally disordered crystals, either from the analysis of literature data on linear dielectric response or from the enthalpy relaxation function obtained by temperature-modulated calorimetry. Knowledge of the specific heat step due to the freezing of the configurational or conformational modes at the glass transition is needed in order to properly account for the extent to which the relaxing system deviates from equilibrium during the rearrangement processes. A number of plastic crystals have been analyzed, and relatively higher cooperativities are found in the presence of hydrogen bonding interaction.
Collapse
Affiliation(s)
| | - Elpidio Tombari
- CNR, Istituto per i Processi Chimico-Fisici, v. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
31
|
Wang L, Xu N, Wang WH, Guan P. Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids. PHYSICAL REVIEW LETTERS 2018; 120:125502. [PMID: 29694097 DOI: 10.1103/physrevlett.120.125502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/12/2018] [Indexed: 06/08/2023]
Abstract
Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious. On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic heterogeneity for all liquids studied, together with a characteristic temperature associated with the same dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic heterogeneity is more informative than expected.
Collapse
Affiliation(s)
- Lijin Wang
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| | - Ning Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - W H Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Pengfei Guan
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| |
Collapse
|
32
|
Abstract
The problem of the equilibrium triplet structures in fluids with quantum behavior is discussed. Theoretical questions of interest to the real space structures are addressed by studying the three types of structures that can be determined via path integrals (instantaneous, centroid, and total thermalized-continuous linear response). The cases of liquid para-H2 and liquid neon on their crystallization lines are examined with path-integral Monte Carlo simulations, the focus being on the instantaneous and the centroid triplet functions (equilateral and isosceles configurations). To analyze the results further, two standard closures, Kirkwood superposition and Jackson-Feenberg convolution, are utilized. In addition, some pilot calculations with path integrals and closures of the instantaneous triplet structure factor of liquid para-H2 are also carried out for the equilateral components. Triplet structural regularities connected to the pair radial structures are identified, a remarkable usefulness of the closures employed is observed (e.g., triplet spatial functions for medium-long distances, triplet structure factors for medium k wave numbers), and physical insight into the role of pair correlations near quantum crystallization is gained.
Collapse
Affiliation(s)
- Luis M Sesé
- Departamento de Ciencias y Técnicas Fisicoquímicas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
33
|
Sato A, Sasaki T. Cooperativity of dynamics in supercooled polymeric materials and its temperature dependence predicted from a surface controlled model. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Gadige P, Albert S, Michl M, Bauer T, Lunkenheimer P, Loidl A, Tourbot R, Wiertel-Gasquet C, Biroli G, Bouchaud JP, Ladieu F. Unifying different interpretations of the nonlinear response in glass-forming liquids. Phys Rev E 2018; 96:032611. [PMID: 29346923 DOI: 10.1103/physreve.96.032611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Indexed: 11/07/2022]
Abstract
This work aims at reconsidering several interpretations coexisting in the recent literature concerning nonlinear susceptibilities in supercooled liquids. We present experimental results on glycerol and propylene carbonate, showing that the three independent cubic susceptibilities have very similar frequency and temperature dependences, for both their amplitudes and phases. This strongly suggests a unique physical mechanism responsible for the growth of these nonlinear susceptibilities. We show that the framework proposed by two of us [J.-P. Bouchaud and G. Biroli, Phys. Rev. B 72, 064204 (2005)PRBMDO1098-012110.1103/PhysRevB.72.064204], where the growth of nonlinear susceptibilities is intimately related to the growth of glassy domains, accounts for all the salient experimental features. We then review several complementary and/or alternative models and show that the notion of cooperatively rearranging glassy domains is a key (implicit or explicit) ingredient to all of them. This paves the way for future experiments, which should deepen our understanding of glasses.
Collapse
Affiliation(s)
- P Gadige
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 772, 91191 Gif-sur-Yvette Cedex, France
| | - S Albert
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 772, 91191 Gif-sur-Yvette Cedex, France
| | - M Michl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Th Bauer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - P Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - A Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - R Tourbot
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 772, 91191 Gif-sur-Yvette Cedex, France
| | - C Wiertel-Gasquet
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 772, 91191 Gif-sur-Yvette Cedex, France
| | - G Biroli
- IPhT, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 774, 91191 Gif-sur-Yvette Cedex, France.,LPS, Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France
| | - J-P Bouchaud
- Capital Fund Management, 23 Rue de l'Université, 75007 Paris, France
| | - F Ladieu
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 772, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
35
|
Chakrabarty S, Tah I, Karmakar S, Dasgupta C. Block Analysis for the Calculation of Dynamic and Static Length Scales in Glass-Forming Liquids. PHYSICAL REVIEW LETTERS 2017; 119:205502. [PMID: 29219342 DOI: 10.1103/physrevlett.119.205502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 05/17/2023]
Abstract
We present block analysis, an efficient method of performing finite-size scaling for obtaining the length scale of dynamic heterogeneity and the point-to-set length scale for generic glass-forming liquids. This method involves considering blocks of varying sizes embedded in a system of a fixed (large) size. The length scale associated with dynamic heterogeneity is obtained from a finite-size scaling analysis of the dependence of the four-point dynamic susceptibility on the block size. The block size dependence of the variance of the α relaxation time yields the static point-to-set length scale. The values of the obtained length scales agree quantitatively with those obtained from other conventional methods. This method provides an efficient experimental tool for studying the growth of length scales in systems such as colloidal glasses for which performing finite-size scaling by carrying out experiments for varying system sizes may not be feasible.
Collapse
Affiliation(s)
- Saurish Chakrabarty
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Shivakote, Hesaraghatta, Hubli, Bangalore, 560089, India
| | - Indrajit Tah
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narisingi, Hyderabad 500075, India
| | - Smarajit Karmakar
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narisingi, Hyderabad 500075, India
| | - Chandan Dasgupta
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
36
|
Wyart M, Cates ME. Does a Growing Static Length Scale Control the Glass Transition? PHYSICAL REVIEW LETTERS 2017; 119:195501. [PMID: 29219532 DOI: 10.1103/physrevlett.119.195501] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Several theories of the glass transition propose that the structural relaxation time τ_{α} is controlled by a growing static length scale ξ that is determined by the free energy landscape but not by the local dynamic rules governing its exploration. We argue, based on recent simulations using particle-radius-swap dynamics, that only a modest factor in the increase in τ_{α} on approach to the glass transition may stem from the growth of a static length, with a vastly larger contribution attributable, instead, to a slowdown of local dynamics. This reinforces arguments that we base on the observed strong coupling of particle diffusion and density fluctuations in real glasses.
Collapse
Affiliation(s)
- Matthieu Wyart
- Institute of Physics, EPFL, CH-1015 Lausanne, Switzerland
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
37
|
Liu G, Feng X, Lang K, Zhang R, Guo D, Yang S, Cheng SZD. Dynamics of Shape-Persistent Giant Molecules: Zimm-like Melt, Elastic Plateau, and Cooperative Glass-like. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01058] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- GengXin Liu
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Xueyan Feng
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Kening Lang
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Ruimeng Zhang
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Dong Guo
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Shuguang Yang
- Center
for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Stephen Z. D. Cheng
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
38
|
Gadige P, Saha D, Behera SK, Bandyopadhyay R. Study of dynamical heterogeneities in colloidal nanoclay suspensions approaching dynamical arrest. Sci Rep 2017; 7:8017. [PMID: 28808265 PMCID: PMC5556041 DOI: 10.1038/s41598-017-08495-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/14/2017] [Indexed: 11/08/2022] Open
Abstract
The dynamics of aqueous Laponite clay suspensions slow down with increasing sample waiting time (t w ). This behavior, and the material fragility that results, closely resemble the dynamical slowdown in fragile supercooled liquids with decreasing temperature, and are typically ascribed to the increasing sizes of distinct dynamical heterogeneities in the sample. In this article, we characterize the dynamical heterogeneities in Laponite suspensions by invoking the three-point dynamic susceptibility formalism. The average time-dependent two-point intensity autocorrelation and its sensitivity to t w are probed in dynamic light scattering experiments. Distributions of relaxation time scales, deduced from the Kohlrausch-Williams-Watts equation, are seen to widen with increasing t w . The calculated three-point dynamic susceptibility of Laponite suspensions exhibits a peak, with the peak height increasing with evolving t w at fixed volume fraction or with increasing volume fraction at fixed t w , thereby signifying the slowdown of the sample dynamics. The number of dynamically correlated particles, calculated from the peak-height, is seen to initially increase rapidly with increasing t w , before eventually slowing down close to the non-ergodic transition point. This observation is in agreement with published reports on supercooled liquids and hard sphere colloidal suspensions and offers a unique insight into the colloidal glass transition of Laponite suspensions.
Collapse
Affiliation(s)
- Paramesh Gadige
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, 560 080, India
| | - Debasish Saha
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, 560 080, India
| | - Sanjay Kumar Behera
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, 560 080, India
| | - Ranjini Bandyopadhyay
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, 560 080, India.
| |
Collapse
|
39
|
Tylinski M, Beasley MS, Chua YZ, Schick C, Ediger MD. Limited surface mobility inhibits stable glass formation for 2-ethyl-1-hexanol. J Chem Phys 2017; 146:203317. [DOI: 10.1063/1.4977787] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. Tylinski
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - M. S. Beasley
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Y. Z. Chua
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - C. Schick
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
40
|
Mangalara JH, Marvin MD, Wiener NR, Mackura ME, Simmons DS. Does fragility of glass formation determine the strength ofTg-nanoconfinement effects? J Chem Phys 2017; 146:104902. [DOI: 10.1063/1.4976521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jayachandra Hari Mangalara
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, USA
| | - Michael D. Marvin
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, USA
| | - Nicholas R. Wiener
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, USA
| | - Mark E. Mackura
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, USA
| | - David S. Simmons
- Department of Polymer Engineering, The University of Akron, 250 South Forge Street, Akron, Ohio 44325-0301, USA
| |
Collapse
|
41
|
Richert R. Relaxation time and excess entropy in viscous liquids: Electric field versus temperature as control parameter. J Chem Phys 2017; 146:064501. [DOI: 10.1063/1.4975389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
42
|
Rijal B, Soto Puente JA, Atawa B, Delbreilh L, Fatyeyeva K, Saiter A, Dargent E. Correlated and cooperative motions in segmental relaxation: Influence of constitutive unit weight and intermolecular interactions. Phys Rev E 2017; 94:062502. [PMID: 28085415 DOI: 10.1103/physreve.94.062502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 11/07/2022]
Abstract
This work clarifies the notion of correlated and cooperative motions appearing during the α-relaxation process through the role of the molecular weight of the constitutive units and of the interchain dipolar interactions. By studying amorphous copolymers of poly(ethylene-co-vinyl acetate) with different vinyl acetate contents, we show that the correlated motions are not sensitive to the interchain dipolar interactions, in contrast to the cooperative motions, which increase with a strengthening of the intermolecular interactions for this sample family. Concerning the influence of the molecular weight m_{0}, the notion of "correlated motions" seems to be equivalent to the notion of "cooperative motions" only for low m_{0} systems.
Collapse
Affiliation(s)
- Bidur Rijal
- Normandie Université, UNIROUEN, LECAP, 76000 Rouen, France
| | - Jorge Arturo Soto Puente
- Normandie Université, UNIROUEN, LECAP, 76000 Rouen, France.,Normandie Université, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Bienvenu Atawa
- Normandie Université, UNIROUEN, LECAP, 76000 Rouen, France
| | | | - Kateryna Fatyeyeva
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | | | - Eric Dargent
- Normandie Université, UNIROUEN, LECAP, 76000 Rouen, France
| |
Collapse
|
43
|
Lü YJ, Wang WH. Single-particle dynamics near the glass transition of a metallic glass. Phys Rev E 2017; 94:062611. [PMID: 28085459 DOI: 10.1103/physreve.94.062611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 11/07/2022]
Abstract
The single-particle dynamics of the glass-forming Cu_{50}Zr_{50} alloy, from the supercooled liquid well above the glass-transition temperature, T_{g} to the glassy state, is studied by using the molecular dynamics simulations. When the liquid is cooled below 1.2T_{g}, the dynamics heterogeneity characterized by the cage-jump motion becomes increasingly pronounced. The analyses based on the continuous time random walk method indicate that the liquid falls out of equilibrium in the present simulation time scale when it is cooled into the regime below 1.02T_{g}. However, we find that the jump length and the jump rate do not display the non-equilibrium behaviors even in the glassy state below T_{g}, which allows us to study the intrinsic dynamic characteristics through T_{g}. The mean waiting time between two successive jumps has a rapid growth following the Vogel-Fulcher-Tammann law as the non-equilibrium regime is approached, in analogy with the temperature behaviors of transport properties for fragile supercooled liquids. In contrast, the jump rate maintains the Arrhenius decay and the jump length has even a weaker temperature dependence when the liquid is cooled into glassy state. We find that a pronounced enhancement of the spatial correlation of jumps occurs accompanied by the glass transition: the string-like cooperative jumps dominate the fast motion instead of the uncorrelated and individual jumps. Our work offers an insight into the equilibrium effect of the single-particle dynamics in glass transition.
Collapse
Affiliation(s)
- Y J Lü
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - W H Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
44
|
A measure of cooperativity in non-Arrhenius structural relaxation in terms of the bond strength–coordination number fluctuation model. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Tombari E, Pieruccini M. Cooperativity at the glass transition: A perspective from facilitation on the analysis of relaxation in modulated calorimetry. Phys Rev E 2016; 94:052504. [PMID: 27967068 DOI: 10.1103/physreve.94.052504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/07/2022]
Abstract
The glass transition region in nonconfined polymeric and low-molecular-weight supercooled liquids is probed by temperature-modulated calorimetry at a frequency of 3.3 mHz. From the distribution of relaxation times derived by analyzing the complex heat capacity, the number N_{α} of cooperatively rearranging units is estimated. This is done by resorting to a method in which cooperative motion is viewed as a result of a spontaneous regression of energy fluctuations. After a first, local, structural transition occurs, the energy threshold for the rearrangement of adjacent molecular units decreases progressively. This facilitation process is associated to a corresponding evolution of the density of states in a canonical representation and may be considered as a continuous spanning through different dynamic states toward a condition in which configurational constraints disappear. A good agreement is found with the N_{α} values obtained from the same calorimetric data within the framework of Donth's fluctuation theory. It is shown that, at variance from previous treatments, N_{α} can be estimated from just the relaxation function, without resorting to the knowledge of the configurational entropy. Examples point to a modest dependence of the N_{α} estimates on the experimental method used to derive the relaxation function.
Collapse
Affiliation(s)
- Elpidio Tombari
- CNR, Istituto per i Processi Chimico-Fisici, v. Moruzzi 1, 56124 Pisa, Italy
| | | |
Collapse
|
46
|
Gupta PK, Cassar DR, Zanotto ED. Role of dynamic heterogeneities in crystal nucleation kinetics in an oxide supercooled liquid. J Chem Phys 2016; 145:211920. [DOI: 10.1063/1.4964674] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Prabhat K. Gupta
- Professor Emeritus, The Ohio State University, Columbus, Ohio 43210, USA
| | - Daniel R. Cassar
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos 13.565-905, Brazil
| | - Edgar D. Zanotto
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos 13.565-905, Brazil
| |
Collapse
|
47
|
Majka M, Góra PF. Thermodynamically consistent Langevin dynamics with spatially correlated noise predicting frictionless regime and transient attraction effect. Phys Rev E 2016; 94:042110. [PMID: 27841532 DOI: 10.1103/physreve.94.042110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 11/07/2022]
Abstract
While the origins of temporal correlations in Langevin dynamics have been thoroughly researched, the understanding of spatially correlated noise (SCN) is rather incomplete. In particular, very little is known about the relation between friction and SCN. In this article, starting from the microscopic, deterministic model, we derive the analytical formula for the spatial correlation function in the particle-bath interactions. This expression shows that SCN is the inherent component of binary mixtures, originating from the effective (entropic) interactions. Further, employing this spatial correlation function, we postulate the thermodynamically consistent Langevin equation driven by the Gaussian SCN and calculate the adequate fluctuation-dissipation relation. The thermodynamical consistency is achieved by introducing the spatially variant friction coefficient, which can be also derived analytically. This coefficient exhibits a number of intriguing properties, e.g., the singular behavior for certain types of interactions. Eventually, we apply this new theory to the system of two charged particles in the presence of counter-ions. Such particles interact via the screened-charge Yukawa potential and the inclusion of SCN leads to the emergence of the anomalous frictionless regime. In this regime the particles can experience active propulsion leading to the transient attraction effect. This effect suggests a nonequilibrium mechanism facilitating the molecular binding of the like-charged particles.
Collapse
Affiliation(s)
- M Majka
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Prof. Stanisława Łojasiewicza 11, 30-348 Kraków Poland
| | - P F Góra
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Prof. Stanisława Łojasiewicza 11, 30-348 Kraków Poland
| |
Collapse
|
48
|
Flenner E, Szamel G, Berthier L. The nonequilibrium glassy dynamics of self-propelled particles. SOFT MATTER 2016; 12:7136-7149. [PMID: 27499055 DOI: 10.1039/c6sm01322h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study the glassy dynamics taking place in dense assemblies of athermal active particles that are driven solely by a nonequilibrium self-propulsion mechanism. Active forces are modeled as an Ornstein-Uhlenbeck stochastic process, characterized by a persistence time and an effective temperature, and particles interact via a Lennard-Jones potential that yields well-studied glassy behavior in the Brownian limit, which is obtained as the persistence time vanishes. By increasing the persistence time, the system departs more strongly from thermal equilibrium and we provide a comprehensive numerical analysis of the structure and dynamics of the resulting active fluid. Finite persistence times profoundly affect the static structure of the fluid and give rise to nonequilibrium velocity correlations that are absent in thermal systems. Despite these nonequilibrium features, for any value of the persistence time we observe a nonequilibrium glass transition as the effective temperature is decreased. Surprisingly, increasing departure from thermal equilibrium is found to promote (rather than suppress) the glassy dynamics. Overall, our results suggest that with increasing persistence time, microscopic properties of the active fluid change quantitatively, but the general features of the nonequilibrium glassy dynamics observed with decreasing the effective temperature remain qualitatively similar to those of thermal glass-formers.
Collapse
Affiliation(s)
- Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
49
|
de Candia A, Fierro A, Coniglio A. Scaling and universality in glass transition. Sci Rep 2016; 6:26481. [PMID: 27221056 PMCID: PMC4879566 DOI: 10.1038/srep26481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/22/2016] [Indexed: 11/12/2022] Open
Abstract
Kinetic facilitated models and the Mode Coupling Theory (MCT) model B are within those systems known to exhibit a discontinuous dynamical transition with a two step relaxation. We consider a general scaling approach, within mean field theory, for such systems by considering the behavior of the density correlator 〈q(t)〉 and the dynamical susceptibility 〈q(2)(t)〉 - 〈q(t)〉(2). Focusing on the Fredrickson and Andersen (FA) facilitated spin model on the Bethe lattice, we extend a cluster approach that was previously developed for continuous glass transitions by Arenzon et al. (Phys. Rev. E 90, 020301(R) (2014)) to describe the decay to the plateau, and consider a damage spreading mechanism to describe the departure from the plateau. We predict scaling laws, which relate dynamical exponents to the static exponents of mean field bootstrap percolation. The dynamical behavior and the scaling laws for both density correlator and dynamical susceptibility coincide with those predicted by MCT. These results explain the origin of scaling laws and the universal behavior associated with the glass transition in mean field, which is characterized by the divergence of the static length of the bootstrap percolation model with an upper critical dimension dc = 8.
Collapse
Affiliation(s)
- Antonio de Candia
- Dipartimento di Fisica “Ettore Pancini”, Università di Napoli “Federico II”, Complesso Universitario di Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy
- CNR-SPIN, via Cintia, 80126 Napoli, Italy
- INFN, Sezione di Napoli, via Cintia, 80126 Napoli, Italy
| | - Annalisa Fierro
- Dipartimento di Fisica “Ettore Pancini”, Università di Napoli “Federico II”, Complesso Universitario di Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy
- CNR-SPIN, via Cintia, 80126 Napoli, Italy
| | - Antonio Coniglio
- Dipartimento di Fisica “Ettore Pancini”, Università di Napoli “Federico II”, Complesso Universitario di Monte Sant’Angelo, via Cintia, 80126 Napoli, Italy
- CNR-SPIN, via Cintia, 80126 Napoli, Italy
| |
Collapse
|
50
|
Grzybowska K, Capaccioli S, Paluch M. Recent developments in the experimental investigations of relaxations in pharmaceuticals by dielectric techniques at ambient and elevated pressure. Adv Drug Deliv Rev 2016; 100:158-82. [PMID: 26705851 DOI: 10.1016/j.addr.2015.12.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
In recent years, there is a growing interest in improving the physicochemical stability of amorphous pharmaceutical solids due to their very promising applications to manufacture medicines characterized by a better water solubility, and consequently by a higher dissolution rate than those of their crystalline counterparts. In this review article, we show that the molecular mobility investigated both in the supercooled liquid and glassy states is the crucial factor required to understand molecular mechanisms that govern the physical stability of amorphous drugs. We demonstrate that pharmaceuticals can be thoroughly examined by means of the broadband dielectric spectroscopy, which is a very useful experimental technique to explore different relaxation processes and crystallization kinetics as well. Such studies conducted in the wide temperature and pressure ranges provide data needed in searching correlations between properties of molecular dynamics and crystallization process, which are aimed at developing effective and efficient methods for stabilizing amorphous drugs.
Collapse
|