1
|
Castañeda-Priego R, Sarmiento-Gómez E, Satalsari YM, Egelhaaf SU, Escobedo-Sánchez MA. Colloidal transport in periodic potentials: the role of modulated-crowding. SOFT MATTER 2025. [PMID: 40265243 DOI: 10.1039/d5sm00133a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The transport properties of colloids in external potentials are often studied at low concentrations to avoid particle-particle interactions. However, the impact of concentration on colloidal dynamics under external potentials has received limited attention. We examine the effect of concentration on the diffusivity of a quasi-2D colloidal dispersion subjected to a light-induced sinusoidal potential (interference fringes). By measuring particle diffusivity perpendicular to the fringes at various concentrations and laser powers, we find how the particle transport is governed by concentration and the structural organization induced by the external potential. Specifically, we introduce the concept of modulated-crowding for this physical scenario and characterize its influence on the long-time self-diffusion coefficient. These findings are confirmed using Brownian dynamics simulations.
Collapse
Affiliation(s)
- Ramón Castañeda-Priego
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 León, Guanajuato, Mexico
| | - Erick Sarmiento-Gómez
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 León, Guanajuato, Mexico
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Yasamin Mohebi Satalsari
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Manuel A Escobedo-Sánchez
- Condensed Matter Physics Laboratory, Heinrich Heine University, Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
2
|
Ordering and Dynamics of Interacting Colloidal Particles under Soft Confinement. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Confinement can induce substantial changes in the physical properties of macromolecules in suspension. Soft confinement is a particular class of restriction where the boundaries that constraint the particles in a region of the space are not well-defined. This scenario leads to a broader structural and dynamical behavior than observed in systems enclosed between rigid walls. In this contribution, we study the ordering and diffusive properties of a two-dimensional colloidal model system subjected to a one-dimensional parabolic trap. Increasing the trap strength makes it possible to go through weak to strong confinement, allowing a dimensional transition from two- to one-dimension. The non-monotonic response of the static and dynamical properties to the gradual dimensionality change affects the system phase behavior. We find that the particle dynamics are connected to the structural transitions induced by the parabolic trap. In particular, at low and intermediate confinement regimes, complex structural and dynamical scenarios arise, where the softness of the external potential induces melting and freezing, resulting in faster and slower particle diffusion, respectively. Besides, at strong confinements, colloids move basically along one direction, and the whole system behaves structurally and dynamically similar to a one-dimensional colloidal system.
Collapse
|
3
|
Dessup T, Coste C, Saint Jean M. Enhancement of Brownian motion for a chain of particles in a periodic potential. Phys Rev E 2018; 97:022103. [PMID: 29548165 DOI: 10.1103/physreve.97.022103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 11/07/2022]
Abstract
The transport of particles in very confined channels in which single file diffusion occurs has been largely studied in systems where the transverse confining potential is smooth. However, in actual physical systems, this potential may exhibit both static corrugations and time fluctuations. Some recent results suggest the important role played by this nonsmoothness of the confining potential. In particular, quite surprisingly, an enhancement of the Brownian motion of the particles has been evidenced in these kinds of systems. We show that this enhancement results from the commensurate effects induced by the underlying potential on the vibrational spectra of the chain of particles, and from the effective temperature associated with its time fluctuations. We will restrict our derivation to the case of low temperatures for which the mean squared displacement of the particles remains smaller than the potential period.
Collapse
Affiliation(s)
- Tommy Dessup
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris-Diderot (Paris 7), 75205 Paris Cedex 13, France
| | - Christophe Coste
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris-Diderot (Paris 7), 75205 Paris Cedex 13, France
| | - Michel Saint Jean
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris-Diderot (Paris 7), 75205 Paris Cedex 13, France
| |
Collapse
|
4
|
Taloni A, Flomenbom O, Castañeda-Priego R, Marchesoni F. Single file dynamics in soft materials. SOFT MATTER 2017; 13:1096-1106. [PMID: 28119987 DOI: 10.1039/c6sm02570f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The term single file (SF) dynamics refers to the motion of an assembly of particles through a channel with cross-sections comparable to the particles' diameter. Single file diffusion (SFD) is then the diffusion of a tagged particle in a single file, i.e., under the condition that particle passing is not allowed. SFD accounts for a large variety of processes in nature, including diffusion of colloids in synthetic and natural channels, biological motors along molecular chains, electrons in proteins and liquid helium, ions through membranes, just to mention a few examples. Albeit introduced in 1965s, over the last decade the classical notion of SF dynamics has been generalised to account for a more realistic modelling of the particle properties, file geometry, particle-particle and channel-particle interactions, which paves the way to remarkable applications of the SF model, for instance, in the technology of bio-integrated nanodevices. We provide here a comprehensive review of the recent advances in the theory of SF dynamics with the purpose of spurring further experimental work.
Collapse
Affiliation(s)
- Alessandro Taloni
- Center for Complexity & Biosystems, Physics Department, University of Milan "La Statale", Via Giovanni Celoria 16, 20133 Milano, Italy and CNR-ISC - Center for Complex Systems, Via dei Taurini 19, 00185, Roma, Italy.
| | | | - Ramón Castañeda-Priego
- Division of Science and Engineering, University of Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150, Leon, Gto., Mexico
| | - Fabio Marchesoni
- Dipartimento di Fisica, Universitá di Camerino, I-62032 Camerino, Italy.
| |
Collapse
|
5
|
Herrera-Velarde S, Pérez-Angel G, Castañeda-Priego R. One-dimensional Gaussian-core fluid: ordering and crossover from normal diffusion to single-file dynamics. SOFT MATTER 2016; 12:9047-9057. [PMID: 27774539 DOI: 10.1039/c6sm01558a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The peculiarity of a bounded pair potential in combination with strong confinement brings some quite interesting new phenomenology in the structure and dynamics of one-dimensional colloidal systems. Such behaviour is atypical in comparison with colloidal systems interacting with potentials that diverge at the origin. In this contribution, by means of molecular dynamics simulations, a confined one-dimensional model of particles interacting via a Gaussian-core pair potential is studied. We explore the effects of confinement, density and temperature on the structural and dynamical correlation functions. Our findings indicate that the static and dynamic liquid-state anomalies already reported in open systems are also present in this 1D model system. Using the radial distribution function and the static structure factor to characterise the spatial ordering, it is observed that the system remains fluid at all densities. However, when the reduced temperature is above 0.03, it displays typical features of a liquid regime, i.e., there exist short-range spatial correlations among particles. In contrast, at lower temperatures and densities, where the particle-particle interaction dominates, the system behaves structurally and dynamically similar to a hard-core repulsive system. In such a region, interestingly, there is a crossover from a liquid to a solid-like regime. At any given temperature, the system undergoes a sort of reentrant structural behaviour as the density increases. At either high densities or temperatures, particle correlations vanish, thus, the system exhibits structural and dynamical properties similar to those of an ideal gas. To examine a possible correlation between the structural anomalies and the diffusive behaviour, the mean-square displacement and the self-intermediate scattering function are also computed. From these observables, we establish the thermodynamic phase-space points where the dynamical behaviour is non-monotonic. In conjunction with the observed anomalous diffusion, we have found a dynamical crossover from single-file diffusion, which is characteristic of one-dimensional systems with a well-defined hard-core, to the ordinary Fickian diffusion present in open systems.
Collapse
Affiliation(s)
- Salvador Herrera-Velarde
- Subdirección de Postgrado e Investigación, Instituto Tecnológico Superior de Xalapa, Sección 5A Reserva Territorial s/n, 91096, Xalapa, Veracruz, Mexico
| | - Gabriel Pérez-Angel
- Departamento de Física Aplicada, Cinvestav, Unidad Mérida, Apartado Postal 73 Cordemex, 97310, Mérida, Yucatán, Mexico
| | - Ramón Castañeda-Priego
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 León, Guanajuato, Mexico.
| |
Collapse
|
6
|
Microscopic dynamics of synchronization in driven colloids. Nat Commun 2015; 6:7187. [PMID: 25994921 PMCID: PMC4455069 DOI: 10.1038/ncomms8187] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/16/2015] [Indexed: 11/08/2022] Open
Abstract
Synchronization of coupled oscillators has been scrutinized for over three centuries, from Huygens' pendulum clocks to physiological rhythms. One such synchronization phenomenon, dynamic mode locking, occurs when naturally oscillating processes are driven by an externally imposed modulation. Typically only averaged or integrated properties are accessible, leaving underlying mechanisms unseen. Here, we visualize the microscopic dynamics underlying mode locking in a colloidal model system, by using particle trajectories to produce phase portraits. Furthermore, we use this approach to examine the enhancement of mode locking in a flexible chain of magnetically coupled particles, which we ascribe to breathing modes caused by mode-locked density waves. Finally, we demonstrate that an emergent density wave in a static colloidal chain mode locks as a quasi-particle, with microscopic dynamics analogous to those seen for a single particle. Our results indicate that understanding the intricate link between emergent behaviour and microscopic dynamics is key to controlling synchronization. Synchronization may occur when naturally oscillating systems are driven by an external modulation, for example, in charge density waves. Here, Juniper et al. visualize the locked modes of synchronization at a microscopic level using a colloidal system.
Collapse
|
7
|
Siems U, Nielaba P. Transport and diffusion properties of interacting colloidal particles in two-dimensional microchannels with a periodic potential. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022313. [PMID: 25768511 DOI: 10.1103/physreve.91.022313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 06/04/2023]
Abstract
We report a Brownian dynamics simulation study of a two-dimensional system of repulsive colloidal particles in a channel geometry with a sinusoidal substrate potential under influence of a constant driving. The effect of this driving on the structure, mobility, and diffusion is discussed as well as the appearance of kink and antikink solitons. The competing order principles of the hexagonal crystal structure, the period of the substrate, and the layering due to the confining walls can be either commensurable or incommensurable. The combination of those three leads to new effects. The simultaneous occurrence of kinks and antikinks can be observed, due to the energy difference between boundary- and midlanes, and similarities to the electron-hole conductivity in a semiconductor can be found.
Collapse
Affiliation(s)
- Ullrich Siems
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - Peter Nielaba
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
8
|
Euán-Díaz EC, Herrera-Velarde S, Misko VR, Peeters FM, Castañeda-Priego R. Structural transitions and long-time self-diffusion of interacting colloids confined by a parabolic potential. J Chem Phys 2015; 142:024902. [DOI: 10.1063/1.4905215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Coste C, Delfau JB, Saint Jean M. Longitudinal and Transverse Single File Diffusion in Quasi-1D Systems. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793048014400025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We review our recent results on Single File Diffusion (SFD) of a chain of particles that cannot cross each other, in a thermal bath, with long ranged interactions, and arbitrary damping. We exhibit new behaviors specifically associated to small systems and to small damping. The fluctuation dynamics is explained by the decomposition of the particles' motion in the normal modes of the chain. For longitudinal fluctuations, we emphasize the relevance of the soft mode linked to the translational invariance of the system to the long time SFD behavior. We show that close to the zigzag threshold, the transverse fluctuations also exhibit the SFD behavior, characterized by a mean square displacement that increases as the square root of time. This cannot be explained by the single file ordering, and the SFD behavior results from the strong correlation of the transverse displacements of neighbouring particles near the bifurcation. Extending our analytical modelization, we demonstrate the existence of this subdiffusive regime near the zigzag transition, in the thermodynamic limit. The zigzag transition is a supercritical pitchfork bifurcation, and we show that the transverse SFD behavior is closely linked to the vanishing of the frequency of the zigzag transverse mode at the bifurcation threshold. [Formula: see text] Special Issue Comments: This article presents mathematical results on the dynamics in files with longitudinal movements. This article is connected to the Special Issue articles about advanced statistical properties in single file dynamics,28 expanding files,63 and files with force and advanced formulations.29
Collapse
Affiliation(s)
- Christophe Coste
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Jean-Baptiste Delfau
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Michel Saint Jean
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| |
Collapse
|
10
|
Lucena D, Galván-Moya JE, Ferreira WP, Peeters FM. Single-file and normal diffusion of magnetic colloids in modulated channels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032306. [PMID: 24730841 DOI: 10.1103/physreve.89.032306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Indexed: 06/03/2023]
Abstract
Diffusive properties of interacting magnetic dipoles confined in a parabolic narrow channel and in the presence of a periodic modulated (corrugated) potential along the unconfined direction are studied using Brownian dynamics simulations. We compare our simulation results with the analytical result for the effective diffusion coefficient of a single particle by Festa and d'Agliano [Physica A 90, 229 (1978)] and show the importance of interparticle interaction on the diffusion process. We present results for the diffusion of magnetic dipoles as a function of linear density, strength of the periodic modulation and commensurability factor.
Collapse
Affiliation(s)
- D Lucena
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-554 Fortaleza, Ceará, Brazil and Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - J E Galván-Moya
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - W P Ferreira
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-554 Fortaleza, Ceará, Brazil
| | - F M Peeters
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-554 Fortaleza, Ceará, Brazil and Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
11
|
Herrera-Velarde S, Euán-Díaz EC, Córdoba-Valdés F, Castañeda-Priego R. Hydrodynamic correlations in three-particle colloidal systems in harmonic traps. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:325102. [PMID: 23838468 DOI: 10.1088/0953-8984/25/32/325102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report on the hydrodynamic correlations between colloids immersed in a low Reynolds number fluid. We consider colloidal arrays composed of three particles; each colloid is trapped in a single harmonic potential and interacts with the other colloids only via hydrodynamic forces. We focus on the role of a third body in the two-body correlation functions. We give special attention to a collinear configuration of particles, although the salient features of an equilateral triangle configuration are outlined. The correlation functions are computed both by means of Brownian dynamics simulations, and by solving analytically and numerically the Langevin equation under the assumption of constant diffusion tensor; this approximation is validated through computer simulations. We explicitly show that the presence of a third body affects the auto- and cross-correlation functions and that their behaviour, in some specific conditions, can be different from that commonly seen in a two-particle system. In particular, we have found that the auto-correlation functions show a slower decay, while the cross-correlation ones exhibit a temporal shift and a weaker amplitude. Moreover, an unexpected behaviour related to a positive correlation and associated with the appearance of new dynamical modes is observed in the case of the collinear array of three particles. This interesting effect might be used to tune the degree of hydrodynamic correlation in few-body colloidal systems.
Collapse
Affiliation(s)
- Salvador Herrera-Velarde
- Subdirección de Postgrado e Investigación, Instituto Tecnológico Superior de Xalapa, Sección 5A Reserva Territorial s/n, 91096, Xalapa, Veracruz, Mexico
| | | | | | | |
Collapse
|
12
|
Lucena D, Ferreira WP, Munarin FF, Farias GA, Peeters FM. Tunable diffusion of magnetic particles in a quasi-one-dimensional channel. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012307. [PMID: 23410331 DOI: 10.1103/physreve.87.012307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/04/2012] [Indexed: 06/01/2023]
Abstract
The diffusion of a system of ferromagnetic dipoles confined in a quasi-one-dimensional parabolic trap is studied using Brownian dynamics simulations. We show that the dynamics of the system is tunable by an in-plane external homogeneous magnetic field. For a strong applied magnetic field, we find that the mobility of the system, the exponent of diffusion, and the crossover time among different diffusion regimes can be tuned by the orientation of the magnetic field. For weak magnetic fields, the exponent of diffusion in the subdiffusive regime is independent of the orientation of the external field.
Collapse
Affiliation(s)
- D Lucena
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil.
| | | | | | | | | |
Collapse
|
13
|
Euán-Díaz EC, Misko VR, Peeters FM, Herrera-Velarde S, Castañeda-Priego R. Single-file diffusion in periodic energy landscapes: the role of hydrodynamic interactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031123. [PMID: 23030882 DOI: 10.1103/physreve.86.031123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Indexed: 06/01/2023]
Abstract
We report on the dynamical properties of interacting colloids confined to one dimension and subjected to external periodic energy landscapes. We particularly focus on the influence of hydrodynamic interactions on the mean-square displacement. Using Brownian dynamics simulations, we study colloidal systems with two types of repulsive interparticle interactions, namely, Yukawa and superparamagnetic potentials. We find that in the homogeneous case, hydrodynamic interactions lead to an enhancement of the particle mobility and the mean-square displacement at long times scales as t(α), with α=1/2+ε and ε being a small correction. This correction, however, becomes much more important in the presence of an external field, which breaks the homogeneity of the particle distribution along the line and, therefore, promotes a richer dynamical scenario due to the hydrodynamical coupling among particles. We provide here the complete dynamical scenario in terms of the external potential parameters: amplitude and commensurability.
Collapse
Affiliation(s)
- E C Euán-Díaz
- Division of Sciences and Engineering, University of Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 León, Guanajuato, Mexico
| | | | | | | | | |
Collapse
|
14
|
Delfau JB, Coste C, Saint Jean M. Single-file diffusion of particles in a box: transient behaviors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061111. [PMID: 23005055 DOI: 10.1103/physreve.85.061111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/03/2012] [Indexed: 06/01/2023]
Abstract
We consider a finite number of particles with soft-core interactions, subjected to thermal fluctuations and confined in a box with excluded mutual passage. Using numerical simulations, we focus on the influence of the longitudinal confinement on the transient behavior of the longitudinal mean squared displacement. We exhibit several power laws for its time evolution according to the confinement range and to the rank of the particle in the file. We model the fluctuations of the particles as those of a chain of springs and point masses in a thermal bath. Our main conclusion is that actual system dynamics can be described in terms of the normal oscillation modes of this chain. Moreover, we obtain complete expressions for the physical observables, in excellent agreement with our simulations. The correct power laws for the time dependency of the mean squared displacement in the various regimes are recovered, and analytical expressions of the prefactors according to the relevant parameters are given.
Collapse
Affiliation(s)
- Jean-Baptiste Delfau
- Laboratoire Matière et Systèmes Complexes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7057, Université Paris Diderot, Paris, France
| | | | | |
Collapse
|
15
|
Delfau JB, Coste C, Saint Jean M. Single-file diffusion of particles with long-range interactions: damping and finite-size effects. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:011101. [PMID: 21867107 DOI: 10.1103/physreve.84.011101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Indexed: 05/31/2023]
Abstract
We study the single file diffusion of a cyclic chain of particles that cannot cross each other, in a thermal bath, with long-ranged interactions and arbitrary damping. We present simulations that exhibit new behaviors specifically associated with systems of small numbers of particles and with small damping. In order to understand those results, we present an original analysis based on the decomposition of the particles' motion in the normal modes of the chain. Our model explains all dynamic regimes observed in our simulations and provides convincing estimates of the crossover times between those regimes.
Collapse
Affiliation(s)
- Jean-Baptiste Delfau
- Laboratoire Matiere et Systemes Complexes, UMR CNRS 7057 et Université Paris Diderot-Paris 7, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
16
|
Tkachenko DV, Misko VR, Peeters FM. Effect of correlated noise on quasi-one-dimensional diffusion. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:051102. [PMID: 21230432 DOI: 10.1103/physreve.82.051102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Indexed: 05/30/2023]
Abstract
Single-file diffusion (SFD) of an infinite one-dimensional chain of interacting particles has a long-time mean-square displacement ∝t(1/2), independent of the type of interparticle repulsive interaction. This behavior is also observed in finite-size chains, although only for certain intervals of time t depending on the chain length L, followed by the ∝t for t→∞, as we demonstrate for a closed circular chain of diffusing interacting particles. Here, we show that spatial correlation of noise slows down SFD and can result, depending on the amount of correlated noise, in either subdiffusive behavior ∝tα, where 0<α<1/2, or even in a total suppression of diffusion (in the limit N→∞). Spatial correlation can explain the subdiffusive behavior in recent SFD experiments in circular channels.
Collapse
Affiliation(s)
- D V Tkachenko
- Department of Physics, University of Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | | | | |
Collapse
|
17
|
Herrera-Velarde S, Zamudio-Ojeda A, Castañeda-Priego R. Ordering and single-file diffusion in colloidal systems. J Chem Phys 2010; 133:114902. [DOI: 10.1063/1.3479003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Coste C, Delfau JB, Even C, Saint Jean M. Single-file diffusion of macroscopic charged particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:051201. [PMID: 20866219 DOI: 10.1103/physreve.81.051201] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Indexed: 05/29/2023]
Abstract
In this paper, we study a macroscopic system of electrically interacting metallic beads organized as a sequence along an annulus. A random mechanical shaking mimics the thermal excitation. We exhibit non-Fickian diffusion (single-file diffusion) at large time. We measure the mobility of the particles and compare it to theoretical expectations. We show that our system cannot be accurately described by theories assuming only hard-sphere interactions. Its behavior is qualitatively described by a theory extended to more realistic potentials [M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003)]. A correct quantitative agreement is shown and we interpret the discrepancies by the violation of the assumption of overdamped dynamics, which is a key point in the theory. We recast previous results on colloids with known interaction potentials and compare them quantitatively to the theory. Focusing on the transition between ordinary and single-file diffusions, we exhibit a dimensionless crossover time that is of order 1 both for colloids and our system, although the time and length scales differ by several orders of magnitude.
Collapse
Affiliation(s)
- C Coste
- Laboratoire MSC, UMR CNRS 7057, Université Paris Diderot-Paris 7, Bâtiment Condorcet, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | | | | | | |
Collapse
|
19
|
Deb D, von Grünberg HH. Colloidal model system for island formation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:245102. [PMID: 21693935 DOI: 10.1088/0953-8984/21/24/245102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present model calculations to explore the possibility of colloidal island formation over strained surfaces. Colloids, aggregating due to attractive depletion interactions, are deposited onto a colloidal surface whose lattice constant and geometry can be varied by optical forces. This allows precise control of the strain between the substrate and the colloidal adsorbate. Three different strain fields are considered: fields with either an unidirectional or a hexagonal variation of strain, and fields with a combination of both variations. We find that the unidirectional field induces the formation of infinitely extended ridges, while hexagonal strain fields lead to regular pyramidal island structures which can be distorted in a controlled way by adding the unidirectional strain component. We furthermore study the dependence of island size on strain strength for the hexagonal strain pattern and find that the area occupied by an island is a constant fraction of the strain field's repeat unit.
Collapse
Affiliation(s)
- D Deb
- Institut für Chemie, Karl-Franzens Universität Graz, A-8010 Graz, Austria
| | | |
Collapse
|
20
|
Herrera-Velarde S, Castañeda-Priego R. Diffusion in two-dimensional colloidal systems on periodic substrates. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:041407. [PMID: 19518233 DOI: 10.1103/physreve.79.041407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 03/09/2009] [Indexed: 05/27/2023]
Abstract
We study the diffusive behavior of two-dimensional charged colloidal suspensions subjected to a sinusoidal substrate by means of Brownian dynamics simulations. We mainly focus on the dependence of the mean-square displacement on the substrate strength. Our findings show a variation in the particle diffusion due to a substrate-induced distortion of the dynamic cage of nearest-neighbor colloids. This mechanism leads to a transition from normal diffusion at short times to subdiffusion on intermediate time scales. However, at long times normal diffusion is recovered. We also show that the variation in the long-time self-diffusion coefficient may be associated with the freezing and re-entrant melting transitions.
Collapse
Affiliation(s)
- Salvador Herrera-Velarde
- Instituto de Física, Universidad de Guanajuato, Loma del Bosque 103, Col. Lomas del Campestre, 37150 León, Guanajuato, Mexico
| | | |
Collapse
|