2
|
Johnson WR, Nilsen J. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter. Phys Rev E 2016; 93:033205. [PMID: 27078473 DOI: 10.1103/physreve.93.033205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 11/07/2022]
Abstract
The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.
Collapse
Affiliation(s)
- W R Johnson
- Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - J Nilsen
- Lawrence Livermore National Laboratory,PO Box 808, Livermore, California 94551, USA
| |
Collapse
|
3
|
Zastrau U, Sperling P, Becker A, Bornath T, Bredow R, Döppner T, Dziarzhytski S, Fennel T, Fletcher LB, Förster E, Fortmann C, Glenzer SH, Göde S, Gregori G, Harmand M, Hilbert V, Holst B, Laarmann T, Lee HJ, Ma T, Mithen JP, Mitzner R, Murphy CD, Nakatsutsumi M, Neumayer P, Przystawik A, Roling S, Schulz M, Siemer B, Skruszewicz S, Tiggesbäumker J, Toleikis S, Tschentscher T, White T, Wöstmann M, Zacharias H, Redmer R. Equilibration dynamics and conductivity of warm dense hydrogen. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:013104. [PMID: 25122398 DOI: 10.1103/physreve.90.013104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Indexed: 06/03/2023]
Abstract
We investigate subpicosecond dynamics of warm dense hydrogen at the XUV free-electron laser facility (FLASH) at DESY (Hamburg). Ultrafast impulsive electron heating is initiated by a ≤ 300-fs short x-ray burst of 92-eV photon energy. A second pulse probes the sample via x-ray scattering at jitter-free variable time delay. We show that the initial molecular structure dissociates within (0.9 ± 0.2) ps, allowing us to infer the energy transfer rate between electrons and ions. We evaluate Saha and Thomas-Fermi ionization models in radiation hydrodynamics simulations, predicting plasma parameters that are subsequently used to calculate the static structure factor. A conductivity model for partially ionized plasma is validated by two-temperature density-functional theory coupled to molecular dynamic simulations and agrees with the experimental data. Our results provide important insights and the needed experimental data on transport properties of dense plasmas.
Collapse
Affiliation(s)
- U Zastrau
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena, Germany and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - P Sperling
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - A Becker
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - T Bornath
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - R Bredow
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - T Döppner
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | - S Dziarzhytski
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany
| | - T Fennel
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - L B Fletcher
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - E Förster
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena, Germany and Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
| | - C Fortmann
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | - S H Glenzer
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - S Göde
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA and Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - G Gregori
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - M Harmand
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany
| | - V Hilbert
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena, Germany
| | - B Holst
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - T Laarmann
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany and The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - H J Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - T Ma
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | - J P Mithen
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - R Mitzner
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - C D Murphy
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - M Nakatsutsumi
- European XFEL, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - P Neumayer
- Extreme Matter Institute, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - A Przystawik
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany
| | - S Roling
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - M Schulz
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany
| | - B Siemer
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - S Skruszewicz
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - J Tiggesbäumker
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - S Toleikis
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, Germany
| | - T Tschentscher
- European XFEL, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - T White
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - M Wöstmann
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - H Zacharias
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - R Redmer
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| |
Collapse
|
4
|
Souza AN, Perkins DJ, Starrett CE, Saumon D, Hansen SB. Predictions of x-ray scattering spectra for warm dense matter. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:023108. [PMID: 25353587 DOI: 10.1103/physreve.89.023108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Indexed: 06/04/2023]
Abstract
We present calculations of x-ray scattering spectra based on ionic and electronic structure factors that are computed from a new model for warm dense matter. In this model, which has no free parameters, the ionic structure is determined consistently with the electronic structure of the bound and free states. The x-ray scattering spectrum is thus fully determined by the plasma temperature, density and nuclear charge, and the experimental parameters. The combined model of warm dense matter and of the x-ray scattering theory is validated against an experiment on room-temperature, solid beryllium. It is then applied to experiments on warm dense beryllium and aluminum. Generally good agreement is found with the experiments. However, some significant discrepancies are revealed and appraised. Based on the strength of our model, we discuss the current state of x-ray scattering experiments on warm dense matter and their potential to determine plasma parameters, to discriminate among models, and to reveal interesting and difficult to model physics in dense plasmas.
Collapse
Affiliation(s)
- A N Souza
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48019, USA
| | - D J Perkins
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - C E Starrett
- Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - D Saumon
- Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - S B Hansen
- Sandia National Laboratories, P. O. Box 5800, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
6
|
Thiele R, Sperling P, Chen M, Bornath T, Fäustlin RR, Fortmann C, Glenzer SH, Kraeft WD, Pukhov A, Toleikis S, Tschentscher T, Redmer R. Thomson scattering on inhomogeneous targets. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:056404. [PMID: 21230599 DOI: 10.1103/physreve.82.056404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Indexed: 05/30/2023]
Abstract
The introduction of brilliant free-electron lasers enables new pump-probe experiments to characterize warm dense matter states. For instance, a short-pulse optical laser irradiates a liquid hydrogen jet that is subsequently probed with brilliant soft x-ray radiation. The strongly inhomogeneous plasma prepared by the optical laser is characterized with particle-in-cell simulations. The interaction of the soft x-ray probe radiation for different time delays between pump and probe with the inhomogeneous plasma is also taken into account via radiative hydrodynamic simulations. We calculate the respective scattering spectrum based on the Born-Mermin approximation for the dynamic structure factor considering the full density and temperature-dependent Thomson scattering cross section throughout the target. We can identify plasmon modes that are generated in different target regions and monitor their temporal evolution. Therefore, such pump-probe experiments are promising tools not only to measure the important plasma parameters density and temperature but also to gain valuable information about their time-dependent profile through the target. The method described here can be applied to various pump-probe scenarios by combining optical lasers and soft x ray, as well as x-ray sources.
Collapse
Affiliation(s)
- R Thiele
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Murillo MS. X-ray Thomson scattering in warm dense matter at low frequencies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:036403. [PMID: 20365878 DOI: 10.1103/physreve.81.036403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/27/2009] [Indexed: 05/29/2023]
Abstract
The low-frequency portion of the x-ray Thomson scattering spectrum is determined by electrons that follow the slow ion motion. This ion motion is characterized by the ion-ion dynamic structure factor, which contains a wealth of information about the ions, including structure and collective modes. The frequency-integrated (diffraction) contribution is considered first. An effective dressed-particle description of warm dense matter is derived from the quantum Ornstein-Zernike equations, and this is used to identify a Yukawa model for warm dense matter. The efficacy of this approach is validated by comparing a predicted structure with data from the extreme case of a liquid metal; good agreement is found. A Thomas-Fermi model is then introduced to allow the separation of bound and free states at finite temperatures, and issues with the definition of the ionization state in warm dense matter are discussed. For applications, analytic structure factors are given on either side of the Kirkwood line. Finally, several models are constructed for describing the slow dynamics of warm dense matter. Two classes of models are introduced that both satisfy the basic sum rules. One class of models is the "plasmon-pole"-like class, which yields the dispersion of ion-acoustic waves. Damping is then included via generalized hydrodynamics models that incorporate viscous contributions.
Collapse
Affiliation(s)
- Michael S Murillo
- Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| |
Collapse
|