1
|
Feng Y, Liu Z, Liu F, Yu J, Liang S, Li F, Zhang Y, Xiao M, Zhang Z. Loss Difference Induced Localization in a Non-Hermitian Honeycomb Photonic Lattice. PHYSICAL REVIEW LETTERS 2023; 131:013802. [PMID: 37478430 DOI: 10.1103/physrevlett.131.013802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/25/2023] [Indexed: 07/23/2023]
Abstract
Non-Hermitian systems with complex-valued energy spectra provide an extraordinary platform for manipulating unconventional dynamics of light. Here, we demonstrate the localization of light in an instantaneously reconfigurable non-Hermitian honeycomb photonic lattice that is established in a coherently prepared atomic system. One set of the sublattices is optically modulated to introduce the absorptive difference between neighboring lattice sites, where the Dirac points in reciprocal space are extended into dispersionless local flat bands, with two shared eigenstates: low-loss (high-loss) one with fields confined at sublattice B (A). When these local flat bands are broad enough due to larger loss difference, the incident beam with its tangential wave vector being at the K point in reciprocal space is effectively localized at sublattice B with weaker absorption, namely, the commonly seen power exchange between adjacent channels in photonic lattices is effectively prohibited. The current work unlocks a new capability from non-Hermitian two-dimensional photonic lattices and provides an alternative route for engineering tunable local flat bands in photonic structures.
Collapse
Affiliation(s)
- Yuan Feng
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenzhi Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fu Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiawei Yu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shun Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Feng Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanpeng Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Xiao
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
- National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
| | - Zhaoyang Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Lavrov AI, Kosevich IA. Sponge cell reaggregation: Cellular structure and morphogenetic potencies of multicellular aggregates. ACTA ACUST UNITED AC 2016; 325:158-77. [DOI: 10.1002/jez.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Andrey I. Lavrov
- Department of Invertebrate Zoology, Faculty of Biology; Lomonosov Moscow State University; Moscow Russia
| | - Igor A. Kosevich
- Department of Invertebrate Zoology, Faculty of Biology; Lomonosov Moscow State University; Moscow Russia
| |
Collapse
|
3
|
Malishava M, Khomeriki R. All-Phononic Digital Transistor on the Basis of Gap-Soliton Dynamics in an Anharmonic Oscillator Ladder. PHYSICAL REVIEW LETTERS 2015; 115:104301. [PMID: 26382679 DOI: 10.1103/physrevlett.115.104301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 06/05/2023]
Abstract
A conceptual mechanism of amplification of phonons by phonons on the basis of a nonlinear band-gap transmission (supratransmission) phenomenon is presented. As an example, a system of weakly coupled chains of anharmonic oscillators is considered. One (source) chain is driven harmonically by a boundary with a frequency located in the upper band close to the band edge of the ladder system. Amplification happens when a second (gate) chain is driven by a small signal in the counterphase and with the same frequency as the first chain. If the total driving of both chains overcomes the band-gap transmission threshold, the large amplitude band-gap soliton emerges and the amplification scenario is realized. The mechanism is interpreted as the nonlinear superposition of evanescent and propagating nonlinear modes manifesting in a single or double soliton generation working in band-gap or bandpass regimes, respectively. The results could be straightforwardly generalized for all-optical or all-magnonic contexts and have all the promise of logic gate operations.
Collapse
Affiliation(s)
- Merab Malishava
- Physics Department, Javakhishvili Tbilisi State University, 3 Chavchavadze, 0179 Tbilisi, Georgia
| | - Ramaz Khomeriki
- Physics Department, Javakhishvili Tbilisi State University, 3 Chavchavadze, 0179 Tbilisi, Georgia
| |
Collapse
|
4
|
Kovaleva A, Manevitch LI, Kosevich YA. Fresnel integrals and irreversible energy transfer in an oscillatory system with time-dependent parameters. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:026602. [PMID: 21405919 DOI: 10.1103/physreve.83.026602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Indexed: 05/30/2023]
Abstract
We demonstrate that in significant limiting cases the problem of irreversible energy transfer in an oscillatory system with time-dependent parameters can be efficiently solved in terms of the Fresnel integrals. For definiteness, we consider a system of two weakly coupled linear oscillators in which the first oscillator with constant parameters is excited by an initial impulse, whereas the coupled oscillator with a slowly varying frequency is initially at rest but then acts as an energy trap. We show that the evolution equations of the slow passage through resonance are identical to the equations of the Landau-Zener tunneling problem, and therefore, the suggested asymptotic solution of the classical problem provides a simple analytic description of the quantum Landau-Zener tunneling with arbitrary initial conditions over a finite time interval. A correctness of approximations is confirmed by numerical simulations.
Collapse
Affiliation(s)
- Agnessa Kovaleva
- Space Research Institute, Russian Academy of Sciences, Moscow 117997, Russia
| | | | | |
Collapse
|
5
|
Khomeriki R, Leon J. Tristability in the pendula chain. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:057202. [PMID: 19113241 DOI: 10.1103/physreve.78.057202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Indexed: 05/27/2023]
Abstract
Experiments on a chain of coupled pendula driven periodically at one end demonstrate the existence of a regime which produces an output frequency at an odd fraction of the driving frequency. The stationary state is then obtained with numerical simulations and modeled with an analytical solution of the continuous sine-Gordon equation that resembles a kinklike motion back and forth in the restricted geometry of the chain. This solution differs from the expressions used to understand nonlinear bistability where the synchronization constraint was the basic assumption. As a result the short pendula chain is shown to possess tristable stationary states and to act as a frequency divider.
Collapse
Affiliation(s)
- Ramaz Khomeriki
- Physics Department, Tbilisi State University, 0128 Tbilisi, Georgia and Max-Planck-Institut fur Physik komplexer Systeme, 01187 Dresden, Germany
| | | |
Collapse
|