1
|
Ge P, Cheng L, Cao H. Complete synchronization of three-layer Rulkov neuron network coupled by electrical and chemical synapses. CHAOS (WOODBURY, N.Y.) 2024; 34:043127. [PMID: 38587536 DOI: 10.1063/5.0177771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
This paper analyzes the complete synchronization of a three-layer Rulkov neuron network model connected by electrical synapses in the same layers and chemical synapses between adjacent layers. The outer coupling matrix of the network is not Laplacian as in linear coupling networks. We develop the master stability function method, in which the invariant manifold of the master stability equations (MSEs) does not correspond to the zero eigenvalues of the connection matrix. After giving the existence conditions of the synchronization manifold about the nonlinear chemical coupling, we investigate the dynamics of the synchronization manifold, which will be identical to that of a synchronous network by fixing the same parameters and initial values. The waveforms show that the transient chaotic windows and the transient approximate periodic windows with increased or decreased periods occur alternatively before asymptotic behaviors. Furthermore, the Lyapunov exponents of the MSEs indicate that the network with a periodic synchronization manifold can achieve complete synchronization, while the network with a chaotic synchronization manifold can not. Finally, we simulate the effects of small perturbations on the asymptotic regimes and the evolution routes for the synchronous periodic and the non-synchronous chaotic network.
Collapse
Affiliation(s)
- Penghe Ge
- Department of Mathematics, School of Mathematics and Statistics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Libo Cheng
- Department of Applied Statistics, School of Mathematics and Statistics, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Hongjun Cao
- School of Mathematics and Statistics, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| |
Collapse
|
2
|
Bahramian A, Ramadoss J, Nazarimehr F, Rajagopal K, Jafari S, Hussain I. A simple one-dimensional map-based model of spiking neurons with wide ranges of firing rates and complexities. J Theor Biol 2022; 539:111062. [DOI: 10.1016/j.jtbi.2022.111062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
|
3
|
Ge P, Cao H. Intermittent evolution routes to the periodic or the chaotic orbits in Rulkov map. CHAOS (WOODBURY, N.Y.) 2021; 31:093119. [PMID: 34598445 DOI: 10.1063/5.0060205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
This paper concerns the intermittent evolution routes to the asymptotic regimes in the Rulkov map. That is, the windows with transient approximate periodic and transient chaotic behaviors occur alternatively before the system reaches the periodic or the chaotic orbits. Meanwhile, the evolution routes to chaotic orbits can be classified into different types according to the windows before reaching asymptotic chaotic states. In addition, the initial values can be regarded as a key factor affecting the asymptotic behaviors and the evolution routes. The effects of the initial values are given by parameter planes, bifurcation diagrams, and waveforms. In order to investigate whether the intermittent evolution routes can be learned by machine learning, some experiments are given to understanding the differences between the trajectories of the Rulkov map generated by the numerical simulations and predicted by the neural networks. These results show that there is about 60% accuracy rate of successfully predicting both the evolution routes and the asymptotic period-3 orbits using a three-layer feedforward neural network, while the bifurcation diagrams can be reconstructed using reservoir computing except a few parameter conditions.
Collapse
Affiliation(s)
- Penghe Ge
- Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| | - Hongjun Cao
- Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| |
Collapse
|
4
|
Ge P, Cao H. Synchronization of Rulkov neuron networks coupled by excitatory and inhibitory chemical synapses. CHAOS (WOODBURY, N.Y.) 2019; 29:023129. [PMID: 30823734 DOI: 10.1063/1.5053908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
This paper takes into account a neuron network model in which the excitatory and the inhibitory Rulkov neurons interact each other through excitatory and inhibitory chemical coupling, respectively. Firstly, for two or more identical or non-identical Rulkov neurons, the existence conditions of the synchronization manifold of the fixed points are investigated, which have received less attention over the past decades. Secondly, the master stability equation of the arbitrarily connected neuron network under the existence conditions of the synchronization manifold is discussed. Thirdly, taking three identical Rulkov neurons as an example, some new results are presented: (1) topological structures that can make the synchronization manifold exist are given, (2) the stability of synchronization when different parameters change is discussed, and (3) the roles of the control parameters, the ratio, as well as the size of the coupling strength and sigmoid function are analyzed. Finally, for the chemical coupling between two non-identical neurons, the transversal system is given and the effect of two coupling strengths on synchronization is analyzed.
Collapse
Affiliation(s)
- Penghe Ge
- Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| | - Hongjun Cao
- Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| |
Collapse
|
5
|
Su F, Wang J, Li H, Deng B, Yu H, Liu C. Analysis and application of neuronal network controllability and observability. CHAOS (WOODBURY, N.Y.) 2017; 27:023103. [PMID: 28249409 DOI: 10.1063/1.4975124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Controllability and observability analyses are important prerequisite for designing suitable neural control strategy, which can help lower the efforts required to control and observe the system dynamics. First, 3-neuron motifs including the excitatory motif, the inhibitory motif, and the mixed motif are constructed to investigate the effects of single neuron and synaptic dynamics on network controllability (observability). Simulation results demonstrate that for networks with the same topological structure, the controllability (observability) of the node always changes if the properties of neurons and synaptic coupling strengths vary. Besides, the inhibitory networks are more controllable (observable) than the excitatory networks when the coupling strengths are the same. Then, the numerically determined controllability results of 3-neuron excitatory motifs are generalized to the desynchronization control of the modular motif network. The control energy and neuronal synchrony measure indexes are used to quantify the controllability of each node in the modular network. The best driver node obtained in this way is the same as the deduced one from motif analysis.
Collapse
Affiliation(s)
- Fei Su
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Jiang Wang
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Huiyan Li
- School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Bin Deng
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Haitao Yu
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Chen Liu
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
A brief history of excitable map-based neurons and neural networks. J Neurosci Methods 2013; 220:116-30. [DOI: 10.1016/j.jneumeth.2013.07.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 11/22/2022]
|
7
|
Gong Y, Xu B, Wu Y. Adaptive coupling optimized spiking coherence and synchronization in Newman-Watts neuronal networks. CHAOS (WOODBURY, N.Y.) 2013; 23:033105. [PMID: 24089941 DOI: 10.1063/1.4813224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this paper, we have numerically studied the effect of adaptive coupling on the temporal coherence and synchronization of spiking activity in Newman-Watts Hodgkin-Huxley neuronal networks. It is found that random shortcuts can enhance the spiking synchronization more rapidly when the increment speed of adaptive coupling is increased and can optimize the temporal coherence of spikes only when the increment speed of adaptive coupling is appropriate. It is also found that adaptive coupling strength can enhance the synchronization of spikes and can optimize the temporal coherence of spikes when random shortcuts are appropriate. These results show that adaptive coupling has a big influence on random shortcuts related spiking activity and can enhance and optimize the temporal coherence and synchronization of spiking activity of the network. These findings can help better understand the roles of adaptive coupling for improving the information processing and transmission in neural systems.
Collapse
Affiliation(s)
- Yubing Gong
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, Shandong 264025, China
| | | | | |
Collapse
|
8
|
Adaptive coupling-enhanced spiking synchronization in Newman-Watts neuronal networks with time delays. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4836-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Gong Y, Lin X, Wang L, Hao Y. Chemical synaptic coupling-induced delay-dependent synchronization transitions in scale-free neuronal networks. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4363-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Hao Y, Gong Y, Lin X, Wang L. Multiple resonances with time delays in scale-free networks of Hodgkin-Huxley neurons subjected to non-Gaussian noise. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4268-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Multiple resonances with time delays and enhancement by non-Gaussian noise in Newman–Watts networks of Hodgkin–Huxley neurons. Neurocomputing 2011. [DOI: 10.1016/j.neucom.2011.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Cao H, Ibarz B. Hybrid discrete-time neural networks. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:5071-5086. [PMID: 20921013 DOI: 10.1098/rsta.2010.0171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.
Collapse
Affiliation(s)
- Hongjun Cao
- Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China.
| | | |
Collapse
|
13
|
Transition and enhancement of synchronization by time delays in stochastic Hodgkin–Huxley neuron networks. Neurocomputing 2010. [DOI: 10.1016/j.neucom.2010.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Synchronization transitions on complex thermo-sensitive neuron networks with time delays. Biophys Chem 2010; 146:126-32. [DOI: 10.1016/j.bpc.2009.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/16/2009] [Accepted: 11/16/2009] [Indexed: 11/18/2022]
|
15
|
Rubinov M, Sporns O, van Leeuwen C, Breakspear M. Symbiotic relationship between brain structure and dynamics. BMC Neurosci 2009; 10:55. [PMID: 19486538 PMCID: PMC2700812 DOI: 10.1186/1471-2202-10-55] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 06/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brain structure and dynamics are interdependent through processes such as activity-dependent neuroplasticity. In this study, we aim to theoretically examine this interdependence in a model of spontaneous cortical activity. To this end, we simulate spontaneous brain dynamics on structural connectivity networks, using coupled nonlinear maps. On slow time scales structural connectivity is gradually adjusted towards the resulting functional patterns via an unsupervised, activity-dependent rewiring rule. The present model has been previously shown to generate cortical-like, modular small-world structural topology from initially random connectivity. We provide further biophysical justification for this model and quantitatively characterize the relationship between structure, function and dynamics that accompanies the ensuing self-organization. RESULTS We show that coupled chaotic dynamics generate ordered and modular functional patterns, even on a random underlying structural connectivity. Consequently, structural connectivity becomes more modular as it rewires towards these functional patterns. Functional networks reflect the underlying structural networks on slow time scales, but significantly less so on faster time scales. In spite of ordered functional topology, structural networks remain robustly interconnected--and therefore small-world--due to the presence of central, inter-modular hub nodes. The noisy dynamics of these hubs enable them to persist despite ongoing rewiring and despite their comparative absence in functional networks. CONCLUSION Our results outline a theoretical mechanism by which brain dynamics may facilitate neuroanatomical self-organization. We find time scale dependent differences between structural and functional networks. These differences are likely to arise from the distinct dynamics of central structural nodes.
Collapse
Affiliation(s)
- Mikail Rubinov
- Black Dog Institute and School of Psychiatry, University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
16
|
|