Qian Y, Liu F. Computing characteristic functions of quantum work in phase space.
Phys Rev E 2019;
100:062119. [PMID:
31962496 DOI:
10.1103/physreve.100.062119]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 11/07/2022]
Abstract
In phase space, we analytically obtain the characteristic functions (CFs) of a forced harmonic oscillator [Talkner et al., Phys. Rev. E 75, 050102(R) (2007)PLEEE81539-375510.1103/PhysRevE.75.050102], a time-dependent mass and frequency harmonic oscillator [Deffner and Lutz, Phys. Rev. E 77, 021128 (2008)PLEEE81539-375510.1103/PhysRevE.77.021128], and coupled harmonic oscillators under driving forces in a simple and unified way. For general quantum systems, a numerical method that approximates the CFs to ℏ^{2} order is proposed. We exemplify the method with a time-dependent frequency harmonic oscillator and a family of quantum systems with time-dependent even power-law potentials.
Collapse