Ostborn P. Renormalization of oscillator lattices with disorder.
PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009;
79:051114. [PMID:
19518423 DOI:
10.1103/physreve.79.051114]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 04/08/2009] [Indexed: 05/27/2023]
Abstract
A real-space renormalization transformation is constructed for lattices of nonidentical oscillators with dynamics of the general form dvarphi_{k}/dt=omega_{k}+g summation operator_{l}f_{lk}(varphi_{l},varphi_{k}) . The transformation acts on ensembles of such lattices. Critical properties corresponding to a second-order phase transition toward macroscopic synchronization are deduced. The analysis is potentially exact but relies in part on unproven assumptions. Numerically, second-order phase transitions with the predicted properties are observed as g increases in two structurally different two-dimensional oscillator models. One model has smooth coupling f_{lk}(varphi_{l},varphi_{k})=phi(varphi_{l}-varphi_{k}) , where phi(x) is nonodd. The other model is pulse coupled, with f_{lk}(varphi_{l},varphi_{k})=delta(varphi_{l})phi(varphi_{k}) . Lower bounds for the critical dimensions for different types of coupling are obtained. For nonodd coupling, macroscopic synchronization cannot be ruled out for any dimension D> or =1 , whereas in the case of odd coupling, the well-known result that it can be ruled out for D<3 is regained.
Collapse