1
|
Deshaka S, Sathish Aravindh M, Arun R, Venkatesan A, Lakshmanan M. Realization of logic gates in bi-directionally coupled nonlinear oscillators. CHAOS (WOODBURY, N.Y.) 2024; 34:083131. [PMID: 39177962 DOI: 10.1063/5.0217881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
Implementation of logic gates has been investigated in nonlinear dynamical systems from various perspectives over the years. Specifically, logic gates have been implemented in both single nonlinear systems and coupled nonlinear oscillators. The majority of the works in the literature have been done on the evolution of single oscillators into OR/AND or NOR/NAND logic gates. In the present study, we demonstrate the design of logic gates in bi-directionally coupled double-well Duffing oscillators by applying two logic inputs to the drive system alone along with a fixed bias. The nonlinear system, comprising both bi-directional components, exhibits varied logic behaviors within an optimal range of coupling strength. Both attractive and repulsive couplings yield similar and complementary logic behaviors in the first and second oscillators. These couplings play a major role in exhibiting fundamental and universal logic gates in simple nonlinear systems. Under a positive bias, both the first and second oscillators demonstrate OR logic gate for the attractive coupling, while exhibiting OR and NOR logic gates, respectively, for the repulsive coupling. Conversely, under a negative bias, both the first and second oscillators display AND logic gate for the attractive coupling, and AND and NAND logical outputs for the repulsive coupling. Furthermore, we confirm the robustness of the bi-directional oscillators against moderate noise in maintaining the desired logical outputs.
Collapse
Affiliation(s)
- S Deshaka
- PG & Research Department of Physics, Nehru Memorial College (Autonomous), Affiliated to Bharathidasan University, Puthanampatti, Tiruchirappalli 621 007, India
| | - M Sathish Aravindh
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India
- Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Centre for Excellence for Studying Critical Transitions in Complex Systems, Indian Institute of Technology Madras, Chennai 600036, India
| | - R Arun
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India
| | - A Venkatesan
- PG & Research Department of Physics, Nehru Memorial College (Autonomous), Affiliated to Bharathidasan University, Puthanampatti, Tiruchirappalli 621 007, India
| | - M Lakshmanan
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India
| |
Collapse
|
2
|
Ashokkumar P, Sathish Aravindh M, Venkatesan A, Lakshmanan M. Realization of all logic gates and memory latch in the SC-CNN cell of the simple nonlinear MLC circuit. CHAOS (WOODBURY, N.Y.) 2021; 31:063119. [PMID: 34241282 DOI: 10.1063/5.0046968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
We investigate the State-Controlled Cellular Neural Network framework of Murali-Lakshmanan-Chua circuit system subjected to two logical signals. By exploiting the attractors generated by this circuit in different regions of phase space, we show that the nonlinear circuit is capable of producing all the logic gates, namely, or, and, nor, nand, Ex-or, and Ex-nor gates, available in digital systems. Further, the circuit system emulates three-input gates and Set-Reset flip-flop logic as well. Moreover, all these logical elements and flip-flop are found to be tolerant to noise. These phenomena are also experimentally demonstrated. Thus, our investigation to realize all logic gates and memory latch in a nonlinear circuit system paves the way to replace or complement the existing technology with a limited number of hardware.
Collapse
Affiliation(s)
- P Ashokkumar
- PG & Research Department of Physics, Nehru Memorial College (Autonomous), Affiliated to Bharathidasan University, Puthanampatti, Tiruchirappalli 621 007, India
| | - M Sathish Aravindh
- PG & Research Department of Physics, Nehru Memorial College (Autonomous), Affiliated to Bharathidasan University, Puthanampatti, Tiruchirappalli 621 007, India
| | - A Venkatesan
- PG & Research Department of Physics, Nehru Memorial College (Autonomous), Affiliated to Bharathidasan University, Puthanampatti, Tiruchirappalli 621 007, India
| | - M Lakshmanan
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India
| |
Collapse
|
3
|
Light sensitive Belousov-Zhabotinsky medium accommodates multiple logic gates. Biosystems 2021; 206:104447. [PMID: 34033907 DOI: 10.1016/j.biosystems.2021.104447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022]
Abstract
Computational functionality has been implemented successfully on chemical reactions in living systems. In the case of Belousov-Zhabotinsky (BZ) reaction, this was achieved by using collision-based techniques and by exploiting the light sensitivity of BZ. In order to unveil the computational capacity of the light sensitive BZ medium and the possibility to implement re-configurable logic, the design of multiple logic gates in a fixed BZ reservoir was investigated. The three basic logic gates (namely NOT, OR and AND) were studied to prove the Turing completeness of the architecture. Namely, all possible Boolean functions can be implemented as a combination of these logic gates. Nonetheless, a more complicated logic function was investigated, aiming to illustrate further capabilities of a fixed size BZ reservoir. The experiments executed within this study were implemented with a Cellular Automata (CA)-based model of the Oregonator equations that simulate excitation and wave propagation on a light sensitive BZ thin film. Given that conventional or von Neumann architecture computations is proved possible on the proposed configuration, the next step would be the realization of unconventional types of computation, such as neuromorphic and fuzzy computations, where the chemical substrate may prove more efficient than silicon.
Collapse
|
4
|
Adamatzky A, Tegelaar M, Wosten HA, Powell AL, Beasley AE, Mayne R. On Boolean gates in fungal colony. Biosystems 2020; 193-194:104138. [DOI: 10.1016/j.biosystems.2020.104138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
|
5
|
Adamatzky A, Tsompanas M, Draper TC, Fullarton C, Mayne R. Liquid Marble Photosensor. Chemphyschem 2019; 21:90-98. [PMID: 31696651 DOI: 10.1002/cphc.201900949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/30/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing LaboratoryUniversity of the West of England, Coldharbour Lane Bristol BS16 1QY UK
| | | | - Thomas C. Draper
- Unconventional Computing LaboratoryUniversity of the West of England, Coldharbour Lane Bristol BS16 1QY UK
| | - Claire Fullarton
- Unconventional Computing LaboratoryUniversity of the West of England, Coldharbour Lane Bristol BS16 1QY UK
| | - Richard Mayne
- Unconventional Computing LaboratoryUniversity of the West of England, Coldharbour Lane Bristol BS16 1QY UK
- Department of Applied SciencesUniversity of the West of England, Coldharbour Lane Bristol BS16 1QY UK
| |
Collapse
|
6
|
Abstract
It is known that the reliable logical response can be extracted from a noisy bistable system at an intermediate value of noise strength when two random or periodic, two-level, square waveform serve as the inputs. The asymmetry of the potential has a very important role and dictates the type of logical operation, such as or or and, exhibited by the system. Here we show that one can construct logic gates with symmetric bistable potential if the two states of the double-well are thermalized with two different heat baths. It has been found that if a given state is kept at a sufficiently low temperature compared to the other, the system shows one kind of logic behavior (say, or). Interestingly, the system's response turns into the other kind (say, and) if the temperature of the initial low-temperature well is increased gradually and the quality of the logical response first improves and then weakens after passing through a maximum at a particular value. However, the reliability of the second kind of logical response (and) is not as good as the first kind (or) and depends on the amplitude of the inputs. Still one can construct both kinds of logic gates with maximum reliability by properly choosing the initial low-temperature well.
Collapse
Affiliation(s)
- Moupriya Das
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Holger Kantz
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
7
|
Egbert MD, Gruenert G, Ibrahim B, Dittrich P. Combining evolution and self-organization to find natural Boolean representations in unconventional computational media. Biosystems 2019; 184:104011. [DOI: 10.1016/j.biosystems.2019.104011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 07/27/2019] [Indexed: 10/26/2022]
|
8
|
Abstract
A substrate does not have to be solid to compute. It is possible to make a computer purely from a liquid. I demonstrate this using a variety of experimental prototypes where a liquid carries signals, actuates mechanical computing devices and hosts chemical reactions. We show hydraulic mathematical machines that compute functions based on mass transfer analogies. I discuss several prototypes of computing devices that employ fluid flows and jets. They are fluid mappers, where the fluid flow explores a geometrically constrained space to find an optimal way around, e.g. the shortest path in a maze, and fluid logic devices where fluid jet streams interact at the junctions of inlets and results of the computation are represented by fluid jets at selected outlets. Fluid mappers and fluidic logic devices compute continuously valued functions albeit discretized. There is also an opportunity to do discrete operation directly by representing information by droplets and liquid marbles (droplets coated by hydrophobic powder). There, computation is implemented at the sites, in time and space, where droplets collide one with another. The liquid computers mentioned above use liquid as signal carrier or actuator: the exact nature of the liquid is not that important. What is inside the liquid becomes crucial when reaction-diffusion liquid-phase computing devices come into play: there, the liquid hosts families of chemical species that interact with each other in a massive-parallel fashion. I shall illustrate a range of computational tasks, including computational geometry, implementable by excitation wave fronts in nonlinear active chemical medium. The overview will enable scientists and engineers to understand how vast is the variety of liquid computers and will inspire them to design their own experimental laboratory prototypes. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing Lab, Department of Computer Science and Creative Technologies, University of the West of England, Bristol, UK
| |
Collapse
|
9
|
Abstract
We propose that fungi Basidiomycetes can be used as computing devices: information is represented by spikes of electrical activity, a computation is implemented in a mycelium network and an interface is realized via fruit bodies. In a series of scoping experiments, we demonstrate that electrical activity recorded on fruits might act as a reliable indicator of the fungi's response to thermal and chemical stimulation. A stimulation of a fruit is reflected in changes of electrical activity of other fruits of a cluster, i.e. there is distant information transfer between fungal fruit bodies. In an automaton model of a fungal computer, we show how to implement computation with fungi and demonstrate that a structure of logical functions computed is determined by mycelium geometry.
Collapse
|
10
|
Adamatzky A, Phillips N, Weerasekera R, Tsompanas MA, Sirakoulis GC. Street map analysis with excitable chemical medium. Phys Rev E 2018; 98:012306. [PMID: 30110822 DOI: 10.1103/physreve.98.012306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Belousov-Zhabotinsky (BZ) thin layer solution is a fruitful substrate for designing unconventional computing devices. A range of logical circuits, wet electronic devices, and neuromorphic prototypes have been constructed. Information processing in BZ computing devices is based on interaction of oxidation (excitation) wave fronts. Dynamics of the wave fronts propagation is programed by geometrical constraints and interaction of colliding wave fronts is tuned by illumination. We apply the principles of BZ computing to explore a geometry of street networks. We use two-variable Oregonator equations, the most widely accepted and verified in laboratory experiments BZ models, to study propagation of excitation wave fronts for a range of excitability parameters, with gradual transition from excitable to subexcitable to nonexcitable. We demonstrate a pruning strategy adopted by the medium with decreasing excitability when wider and ballistically appropriate streets are selected. We explain mechanics of streets selection and pruning. The results of the paper will be used in future studies of studying dynamics of cities and characterizing geometry of street networks.
Collapse
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol, United Kingdom
| | - Neil Phillips
- Unconventional Computing Laboratory, University of the West of England, Bristol, United Kingdom
| | - Roshan Weerasekera
- Unconventional Computing Laboratory, University of the West of England, Bristol, United Kingdom
| | | | - Georgios Ch Sirakoulis
- Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
| |
Collapse
|
11
|
Adamatzky A. On Emulation of Flueric Devices in Excitable Chemical Medium. PLoS One 2016; 11:e0168267. [PMID: 27997561 PMCID: PMC5173363 DOI: 10.1371/journal.pone.0168267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/29/2016] [Indexed: 11/18/2022] Open
Abstract
Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.
Collapse
Affiliation(s)
- Andrew Adamatzky
- University of the West of England, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Abstract
The central nervous system (CNS) underlies memory, perception, decision-making, and behavior in numerous organisms. However, neural networks have no monopoly on the signaling functions that implement these remarkable algorithms. It is often forgotten that neurons optimized cellular signaling modes that existed long before the CNS appeared during evolution, and were used by somatic cellular networks to orchestrate physiology, embryonic development, and behavior. Many of the key dynamics that enable information processing can, in fact, be implemented by different biological hardware. This is widely exploited by organisms throughout the tree of life. Here, we review data on memory, learning, and other aspects of cognition in a range of models, including single celled organisms, plants, and tissues in animal bodies. We discuss current knowledge of the molecular mechanisms at work in these systems, and suggest several hypotheses for future investigation. The study of cognitive processes implemented in aneural contexts is a fascinating, highly interdisciplinary topic that has many implications for evolution, cell biology, regenerative medicine, computer science, and synthetic bioengineering.
Collapse
Affiliation(s)
- František Baluška
- Department of Plant Cell Biology, IZMB, University of Bonn Bonn, Germany
| | - Michael Levin
- Biology Department, Tufts Center for Regenerative and Developmental Biology, Tufts University Medford, MA, USA
| |
Collapse
|
13
|
Entcheva E, Bub G. All-optical control of cardiac excitation: combined high-resolution optogenetic actuation and optical mapping. J Physiol 2016; 594:2503-10. [PMID: 26857427 PMCID: PMC4850200 DOI: 10.1113/jp271559] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/28/2015] [Indexed: 11/21/2022] Open
Abstract
Cardiac tissue is an excitable system that can support complex spatiotemporal dynamics, including instabilities (arrhythmias) with lethal consequences. While over the last two decades optical mapping of excitation (voltage and calcium dynamics) has facilitated the detailed characterization of such arrhythmia events, until recently, no precise tools existed to actively interrogate cardiac dynamics in space and time. In this work, we discuss the combined use of new methods for space- and time-resolved optogenetic actuation and simultaneous fast, high resolution optical imaging of cardiac excitation waves. First, the mechanisms, limitations and unique features of optically induced responses in cardiomyocytes are outlined. These include the ability to bidirectionally control the membrane potential using depolarizing and hyperpolarizing opsins; the ability to induce prolonged sustained voltage changes; and the ability to control refractoriness and the shape of the cardiac action potential. At the syncytial tissue level, we discuss optogenetically enabled experimentation on cell-cell coupling, alteration of conduction properties and termination of propagating waves by light. Specific attention is given to space- and time-resolved application of optical stimulation using dynamic light patterns to perturb ongoing activation and to probe electrophysiological properties at desired tissue locations. The combined use of optical methods to perturb and to observe the system can offer new tools for precise feedback control of cardiac electrical activity, not available previously with pharmacological and electrical stimulation. These new experimental tools for all-optical electrophysiology allow for a level of precise manipulation and quantification of cardiac dynamics comparable in robustness to the computational setting, and can provide new insights into pacemaking, arrhythmogenesis and suppression or cardioversion.
Collapse
Affiliation(s)
- Emilia Entcheva
- Department of Biomedical EngineeringGeorge Washington UniversityWashingtonDCUSA
| | - Gil Bub
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
14
|
Adamatzky A. Binary full adder, made of fusion gates, in a subexcitable Belousov-Zhabotinsky system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032811. [PMID: 26465532 DOI: 10.1103/physreve.92.032811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 06/05/2023]
Abstract
In an excitable thin-layer Belousov-Zhabotinsky (BZ) medium a localized perturbation leads to the formation of omnidirectional target or spiral waves of excitation. A subexcitable BZ medium responds to asymmetric local perturbation by producing traveling localized excitation wave-fragments, distant relatives of dissipative solitons. The size and life span of an excitation wave-fragment depend on the illumination level of the medium. Under the right conditions the wave-fragments conserve their shape and velocity vectors for extended time periods. I interpret the wave-fragments as values of Boolean variables. When two or more wave-fragments collide they annihilate or merge into a new wave-fragment. States of the logic variables, represented by the wave-fragments, are changed in the result of the collision between the wave-fragments. Thus, a logical gate is implemented. Several theoretical designs and experimental laboratory implementations of Boolean logic gates have been proposed in the past but little has been done cascading the gates into binary arithmetical circuits. I propose a unique design of a binary one-bit full adder based on a fusion gate. A fusion gate is a two-input three-output logical device which calculates the conjunction of the input variables and the conjunction of one input variable with the negation of another input variable. The gate is made of three channels: two channels cross each other at an angle, a third channel starts at the junction. The channels contain a BZ medium. When two excitation wave-fragments, traveling towards each other along input channels, collide at the junction they merge into a single wave-front traveling along the third channel. If there is just one wave-front in the input channel, the front continues its propagation undisturbed. I make a one-bit full adder by cascading two fusion gates. I show how to cascade the adder blocks into a many-bit full adder. I evaluate the feasibility of my designs by simulating the evolution of excitation in the gates and adders using the numerical integration of Oregonator equations.
Collapse
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing Centre, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
15
|
Das M, Ray DS. Control of logic gates by dichotomous noise in energetic and entropic systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:032122. [PMID: 24125228 DOI: 10.1103/physreve.88.032122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/07/2013] [Indexed: 06/02/2023]
Abstract
We consider the stochastic response of a nonlinear dynamical system towards a combination of input signals. The response can assume binary values if the state of the system is considered to be the output and the system can make transitions between two states separated by an energetic or entropic barrier. We show how the input-output correspondence can be controlled by an external exponentially correlated dichotomous noise optimizing the logical response which exhibits a maximum at an intermediate value of correlation time. This resonance manifests itself as a "logical" resonance correlation effect and sets the condition for performance of the stochastic system as a logic gate. The role of asymmetry of the dichotomous noise is examined and the results on numerical simulations are correlated with a two-state model using a master equation approach.
Collapse
Affiliation(s)
- Moupriya Das
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | | |
Collapse
|
16
|
Das M, Mondal D, Ray DS. Logic gates for entropic transport. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041112. [PMID: 23214534 DOI: 10.1103/physreve.86.041112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Indexed: 06/01/2023]
Abstract
We consider a Brownian particle that is confined in a two-dimensional enclosure and driven by a combination of input signals. It has been shown that the logic gates can be formed by considering the state of the particle experiencing an entropic barrier as the output signal. For a consistent logical output, it is necessary to optimize the strength of the noise driving the particle for a given system size. The variation of the logical output behavior exhibits a turnover at an optimal value of system size parameter, implying a size resonance condition in entropic transport. The role of a transverse bias field used to tune the transport between the entropy dominated regime and the energy dominated regime is elucidated.
Collapse
Affiliation(s)
- Moupriya Das
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | | | | |
Collapse
|
17
|
Adamatzky A, Holley J, Dittrich P, Gorecki J, De Lacy Costello B, Zauner KP, Bull L. On architectures of circuits implemented in simulated Belousov–Zhabotinsky droplets. Biosystems 2012; 109:72-7. [DOI: 10.1016/j.biosystems.2011.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/28/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
|
18
|
Stevens WM, Adamatzky A, Jahan I, Costello BDL. Time-dependent wave selection for information processing in excitable media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:066129. [PMID: 23005184 DOI: 10.1103/physreve.85.066129] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/24/2012] [Indexed: 06/01/2023]
Abstract
We demonstrate an improved technique for implementing logic circuits in light-sensitive chemical excitable media. The technique makes use of the constant-speed propagation of waves along defined channels in an excitable medium based on the Belousov-Zhabotinsky reaction, along with the mutual annihilation of colliding waves. What distinguishes this work from previous work in this area is that regions where channels meet at a junction can periodically alternate between permitting the propagation of waves and blocking them. These valvelike areas are used to select waves based on the length of time that it takes waves to propagate from one valve to another. In an experimental implementation, the channels that make up the circuit layout are projected by a digital projector connected to a computer. Excitable channels are projected as dark areas and unexcitable regions as light areas. Valves alternate between dark and light: Every valve has the same period and phase, with a 50% duty cycle. This scheme can be used to make logic gates based on combinations of or and and-not operations, with few geometrical constraints. Because there are few geometrical constraints, compact circuits can be implemented. Experimental results from an implementation of a four-bit input, two-bit output integer square root circuit are given.
Collapse
Affiliation(s)
- William M Stevens
- Faculty of Environment and Technology, University of the West of England, Bristol BS16 1QY, United Kingdom.
| | | | | | | |
Collapse
|
19
|
Lacy Costello BD, Adamatzky A, Jahan I, Zhang L. Towards constructing one-bit binary adder in excitable chemical medium. Chem Phys 2011. [DOI: 10.1016/j.chemphys.2011.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Adamatzky A, De Lacy Costello B, Bull L, Holley J. Towards Arithmetic Circuits in Sub-Excitable Chemical Media. Isr J Chem 2011. [DOI: 10.1002/ijch.201000046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|