1
|
Duan J, Ding G, Cai SL, Dai LH, Ma E, Jiang MQ. Multiple and transforming vibrational identities of atoms in amorphous solids. J Chem Phys 2025; 162:044502. [PMID: 39846799 DOI: 10.1063/5.0250753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
Identifying the diverse roles of disorderly packed atoms inside an amorphous solid has been a highly pursued but daunting task in glass physics. By analyzing the full-frequency vibrational modes of a model Cu50Zr50 glass, here, we classify the internal atoms into low-, subhigh-, and high-frequency ones that have different tendencies for rearrangements upon excitations. We find that low-frequency atoms are structurally unfavored and tend to aggregate. High-frequency atoms originating from compressed atomic pairs are also mechanically unstable. As yield approaches, shear-transformation rearrangements shift from low-frequency to high-frequency atoms. Subhigh-frequency atoms play the role of stable backbones. Given that atoms can have different identities, multiple identities are observed to overlap in space. Atoms with one vibrational identity often transform to another one, showing different preferences in transformation routes. Our results deepen the understanding of atomic structures for amorphous plasticity beyond the simplified picture of soft vs hard spots.
Collapse
Affiliation(s)
- J Duan
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - G Ding
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - S L Cai
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - L H Dai
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China
| | - E Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - M Q Jiang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
2
|
Sahu R, Sharma M, Schall P, Maitra Bhattacharyya S, Chikkadi V. Structural origin of relaxation in dense colloidal suspensions. Proc Natl Acad Sci U S A 2024; 121:e2405515121. [PMID: 39382997 PMCID: PMC11494359 DOI: 10.1073/pnas.2405515121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/22/2024] [Indexed: 10/11/2024] Open
Abstract
Amorphous solids relax via slow molecular rearrangement induced by thermal fluctuations or applied stress. Microscopic structural signatures predicting these structural relaxations have been long searched for but have so far only been found in dynamic quantities such as vibrational quasi-localized soft modes or with structurally trained neural networks. A physically meaningful structural quantity remains elusive. Here, we introduce a structural order parameter derived from the mean-field caging potential experienced by the particles due to their neighbors, which reliably predicts the occurrence of structural relaxations. The structural parameter, derived from density functional theory, provides a measure of susceptibility to particle rearrangements that can effectively identify weak or defect-like regions in disordered systems. Using experiments on dense colloidal suspensions, we demonstrate a strong correlation between this order parameter and the structural relaxations of the amorphous solid. In quiescent suspensions, this correlation increases with density, when particle rearrangements become rarer and more localized. In sheared suspensions, the order parameter reliably pinpoints shear transformations; the applied shear weakens the caging potential due to shear-induced structural distortions, causing the proliferation of plastic deformation at structurally weak regions. Our work paves the way to a structural understanding of the relaxation of a wide range of amorphous solids, from suspensions to metallic glasses.
Collapse
Affiliation(s)
- Ratimanasee Sahu
- Physics Division, Indian Institute of Science Education and Research Pune, Pune411008, India
| | - Mohit Sharma
- Polymer Science and Engineering Division, CSIR - National Chemical Laboratory, Pune411008, India
- Academy of Scientific and Innovative Research, Ghaziabad201002, India
| | - Peter Schall
- Institute of Physics, University of Amsterdam, Amsterdam1098 XH, The Netherlands
| | - Sarika Maitra Bhattacharyya
- Polymer Science and Engineering Division, CSIR - National Chemical Laboratory, Pune411008, India
- Academy of Scientific and Innovative Research, Ghaziabad201002, India
| | - Vijayakumar Chikkadi
- Physics Division, Indian Institute of Science Education and Research Pune, Pune411008, India
| |
Collapse
|
3
|
Du X, Weeks ER. Rearrangements during slow compression of a jammed two-dimensional emulsion. Phys Rev E 2024; 109:034605. [PMID: 38632734 DOI: 10.1103/physreve.109.034605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/20/2024] [Indexed: 04/19/2024]
Abstract
As amorphous materials get jammed, both geometric and dynamic heterogeneity are observed. We investigate the correlation between the local geometric heterogeneity and local rearrangements in a slowly compressed bidisperse quasi-two-dimensional emulsion system. The compression is driven by evaporation of the continuous phase and causes the area packing fraction to increase from 0.88 to 0.99. We quantify the structural heterogeneity of the system using the radical Voronoi tessellation following the method of Rieser et al. [Phys. Rev. Lett. 116, 088001 (2016)]0031-900710.1103/PhysRevLett.116.088001. We define two structural quantities characterizing local structure, the first of which considers nearest neighbors and the second of which includes information from second-nearest neighbors. We find that droplets in heterogeneous local regions are more likely to have local rearrangements. These rearrangements are generally T1 events where two droplets converge toward a void, and two droplets move away from the void to make room for the converging droplets. Thus, the presence of the voids tends to orient the T1 events. The presence of a correlation between the structural quantities and the rearrangement dynamics remains qualitatively unchanged over the entire range of packing fractions observed.
Collapse
Affiliation(s)
- Xin Du
- Department of Physics and Astronomy, Widener University, Chester, Pennsylvania 19013, USA
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
4
|
Petersen CF, Harrowell P. Direct measurement of the structural change associated with amorphous solidification using static scattering of coherent radiation. J Chem Phys 2023; 159:244506. [PMID: 38156637 DOI: 10.1063/5.0177251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
In this paper, we demonstrate that the weak temperature dependence of the structure factor of supercooled liquids, a defining feature of the glass transition, is a consequence of the averaging of the scattering intensity due to angular averaging. We show that the speckle at individual wavevectors, calculated from a simulated glass former, exhibits a Debye-Waller factor with a sufficiently large temperature dependence to represent a structural order parameter capable of distinguishing liquid from glass. We also extract from the speckle intensities a quantity proportional to the variance of the local restraint, i.e., a direct experimental measure of the amplitude of structural heterogeneity.
Collapse
Affiliation(s)
- Charlotte F Petersen
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Peter Harrowell
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
5
|
Rottler J, Ruscher C, Sollich P. Thawed matrix method for computing local mechanical properties of amorphous solids. J Chem Phys 2023; 159:214501. [PMID: 38038209 DOI: 10.1063/5.0167877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
We present a method for computing locally varying nonlinear mechanical properties in particle simulations of amorphous solids. Plastic rearrangements outside a probed region are suppressed by introducing an external field that directly penalizes large nonaffine displacements. With increasing strength of the field, plastic deformation can be localized. We characterize the distribution of local plastic yield stresses (residual local stresses to instability) with our approach and assess the correlation of their spatial maps with plastic activity in a model two-dimensional amorphous solid. Our approach reduces artifacts inherent in a previous method known as the "frozen matrix" approach that enforces fully affine deformation and improves the prediction of plastic rearrangements from structural information.
Collapse
Affiliation(s)
- Jörg Rottler
- Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Céline Ruscher
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Peter Sollich
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Thijssen K, Liverpool TB, Royall CP, Jack RL. Necking and failure of a particulate gel strand: signatures of yielding on different length scales. SOFT MATTER 2023; 19:7412-7428. [PMID: 37743690 DOI: 10.1039/d3sm00681f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
"Sticky" spheres with a short-ranged attraction are a basic model of a wide range of materials from the atomic to the granular length scale. Among the complex phenomena exhibited by sticky spheres is the formation of far-from-equilibrium dynamically arrested networks which comprise "strands" of densely packed particles. The aging and failure of such gels under load is a remarkably challenging problem, given the simplicity of the model, as it involves multiple length- and time-scales, making a single approach ineffective. Here we tackle this challenge by addressing the failure of a single strand with a combination of methods. We study the mechanical response of a single strand of a model gel-former to deformation, both numerically and analytically. Under elongation, the strand breaks by a necking instability. We analyse this behaviour at three different length scales: a rheological continuum model of the whole strand; a microscopic analysis of the particle structure and dynamics; and the local stress tensor. Combining these different approaches gives a coherent picture of the necking and failure. The strand has an amorphous local structure and has large residual stresses from its initialisation. We find that neck formation is associated with increased plastic flow, a reduction in the stability of the local structure, and a reduction in the residual stresses; this indicates that the system loses its solid character and starts to behave more like a viscous fluid. These results will inform the development of more detailed models that incorporate the heterogeneous network structure of particulate gels.
Collapse
Affiliation(s)
- Kristian Thijssen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | - C Patrick Royall
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Robert L Jack
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.
| |
Collapse
|
7
|
Richard D, Kapteijns G, Lerner E. Detecting low-energy quasilocalized excitations in computer glasses. Phys Rev E 2023; 108:044124. [PMID: 37978582 DOI: 10.1103/physreve.108.044124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/15/2023] [Indexed: 11/19/2023]
Abstract
Soft, quasilocalized excitations (QLEs) are known to generically emerge in a broad class of disordered solids and to govern many facets of the physics of glasses, from wave attenuation to plastic instabilities. In view of this key role of QLEs, shedding light upon several open questions in glass physics depends on the availability of computational tools that allow one to study QLEs' statistical mechanics. The latter is a formidable task since harmonic analyses are typically contaminated by hybridizations of QLEs with phononic excitations at low frequencies, obscuring a clear picture of QLEs' abundance, typical frequencies, and other important micromechanical properties. Here we present an efficient algorithm to detect the field of quasilocalized excitations in structural computer glasses. The algorithm introduced takes a computer-glass sample as input and outputs a library of QLEs embedded in that sample. We demonstrate the power of the algorithm by reporting the spectrum of glassy excitations in two-dimensional computer glasses featuring a huge range of mechanical stability, which is inaccessible using conventional harmonic analyses due to phonon hybridizations. Future applications are discussed.
Collapse
Affiliation(s)
- David Richard
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Geert Kapteijns
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
8
|
Conyuh DA, Semenov AA, Beltukov YM. Effective elastic moduli of composites with a strongly disordered host material. Phys Rev E 2023; 108:045004. [PMID: 37978662 DOI: 10.1103/physreve.108.045004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/19/2023] [Indexed: 11/19/2023]
Abstract
The local elastic properties of strongly disordered material are investigated using the theory of correlated random matrices. A significant increase in stiffness is shown in the interfacial region, the thickness of which depends on the strength of disorder. It is shown that this effect plays a crucial role in nanocomposites, in which interfacial regions are formed around each nanoparticle. The studied interfacial effect can significantly increase the influence of nanoparticles on the macroscopic stiffness of nanocomposites. The obtained thickness of the interfacial region is determined by the heterogeneity lengthscale and is of the same order as the lengthscale of the boson peak.
Collapse
Affiliation(s)
- D A Conyuh
- Ioffe Institute, Politechnicheskaya Str. 26, 194021 St. Petersburg, Russia
| | - A A Semenov
- Ioffe Institute, Politechnicheskaya Str. 26, 194021 St. Petersburg, Russia
| | - Y M Beltukov
- Ioffe Institute, Politechnicheskaya Str. 26, 194021 St. Petersburg, Russia
| |
Collapse
|
9
|
Zhang S, Jin W, Wang D, Xu D, Zhang J, Shattuck MD, O'Hern CS. Local and global measures of the shear moduli of jammed disk packings. Phys Rev E 2023; 107:054903. [PMID: 37329065 DOI: 10.1103/physreve.107.054903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Strain-controlled isotropic compression gives rise to jammed packings of repulsive, frictionless disks with either positive or negative global shear moduli. We carry out computational studies to understand the contributions of the negative shear moduli to the mechanical response of jammed disk packings. We first decompose the ensemble-averaged, global shear modulus as 〈G〉=(1-F_{-})〈G_{+}〉+F_{-}〈G_{-}〉, where F_{-} is the fraction of jammed packings with negative shear moduli and 〈G_{+}〉 and 〈G_{-}〉 are the average values from packings with positive and negative moduli, respectively. We show that 〈G_{+}〉 and 〈|G_{-}|〉 obey different power-law scaling relations above and below pN^{2}∼1. For pN^{2}>1, both 〈G_{+}〉N and 〈|G_{-}|〉N∼(pN^{2})^{β}, where β∼0.5 for repulsive linear spring interactions. Despite this, 〈G〉N∼(pN^{2})^{β^{'}} with β^{'}≳0.5 due to the contributions from packings with negative shear moduli. We show further that the probability distribution of global shear moduli P(G) collapses at fixed pN^{2} and different values of p and N. We calculate analytically that P(G) is a Γ distribution in the pN^{2}≪1 limit. As pN^{2} increases, the skewness of P(G) decreases and P(G) becomes a skew-normal distribution with negative skewness in the pN^{2}≫1 limit. We also partition jammed disk packings into subsystems using Delaunay triangulation of the disk centers to calculate local shear moduli. We show that the local shear moduli defined from groups of adjacent triangles can be negative even when G>0. The spatial correlation function of local shear moduli C(r[over ⃗]) displays weak correlations for pn_{sub}^{2}<10^{-2}, where n_{sub} is the number of particles within each subsystem. However, C(r[over ⃗]) begins to develop long-ranged spatial correlations with fourfold angular symmetry for pn_{sub}^{2}≳10^{-2}.
Collapse
Affiliation(s)
- Shiyun Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Weiwei Jin
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Dong Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Ding Xu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jerry Zhang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
10
|
Nampoothiri JN, D'Eon M, Ramola K, Chakraborty B, Bhattacharjee S. Tensor electromagnetism and emergent elasticity in jammed solids. Phys Rev E 2022; 106:065004. [PMID: 36671086 DOI: 10.1103/physreve.106.065004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/22/2022] [Indexed: 12/27/2022]
Abstract
The theory of mechanical response and stress transmission in disordered, jammed solids poses several open questions of how nonperiodic networks-apparently indistinguishable from a snapshot of a fluid-sustain shear. We present a stress-only theory of emergent elasticity for a nonthermal amorphous assembly of grains in a jammed solid, where each grain is subjected to mechanical constraints of force and torque balance. These grain-level constraints lead to the Gauss's law of an emergent U(1) tensor electromagnetism, which then accounts for the mechanical response of such solids. This formulation of amorphous elasticity has several immediate consequences. The mechanical response maps exactly to the static, dielectric response of this tensorial electromagnetism with the polarizability of the medium mapping to emergent elastic moduli. External forces act as vector electric charges, whereas the tensorial magnetic fields are sourced by momentum density. The dynamics in the electric and magnetic sectors naturally translate into the dynamics of the rigid jammed network and ballistic particle motion, respectively. The theoretical predictions for both stress-stress correlations and responses are borne out by the results of numerical simulations of frictionless granular packings in the static limit of the theory in both 2D and 3D.
Collapse
Affiliation(s)
- Jishnu N Nampoothiri
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.,Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Michael D'Eon
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Kabir Ramola
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Bulbul Chakraborty
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Subhro Bhattacharjee
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| |
Collapse
|
11
|
Temperature Rise Inside Shear Bands in a Simple Model Glass. Int J Mol Sci 2022; 23:ijms232012159. [PMID: 36293022 PMCID: PMC9602912 DOI: 10.3390/ijms232012159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
One of the key factors, which hampers the application of metallic glasses as structural components, is the localization of deformation in narrow bands of a few tens up to one hundred nanometers thickness, the so-called shear bands. Processes, which occur inside shear bands are of central importance for the question whether a catastrophic failure of the material is unavoidable or can be circumvented or, at least, delayed. Via molecular dynamics simulations, this study addresses one of these processes, namely the local temperature rise due to viscous heat generation. The major contribution to energy dissipation is traced back to the plastic work performed by shear stress during steady deformation. Zones of largest strain contribute the most to this process and coincide with high-temperature domains (hottest spots) inside the sample. Magnitude of temperature rise can reach a few percent of the sample’s glass transition temperature. Consequences of these observations are discussed in the context of the current research in the field.
Collapse
|
12
|
Novikov VN. Upper bound of fragility from spatial fluctuations of shear modulus and boson peak in glasses. Phys Rev E 2022; 106:024611. [PMID: 36109942 DOI: 10.1103/physreve.106.024611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
It is shown that the normalized rms fluctuation of the shear modulus on the medium-range order scale in glasses correlates with fragility: the higher fragility, the smaller the fluctuation amplitude. The latter is calculated within the heterogeneous elasticity theory using the data on the boson peak in glasses. On a smaller scale corresponding to cooperative structural relaxation, the normalized rms fluctuation of the infinite-frequency shear modulus was estimated using the data on the decoupling of viscosity and diffusion in supercooled liquids. These fluctuations are much smaller in amplitude, and, in contrast, they increase with increasing fragility. Extrapolation predicts intersection of both rms fluctuations and disappearing of the boson peak at the upper limit to fragility ≈180.
Collapse
Affiliation(s)
- V N Novikov
- Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, 1 Koptyug Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
13
|
Montiel A, Nguyen T, Rountree CL, Geertsen V, Guenoun P, Bonamy D. Effect of architecture disorder on the elastic response of two-dimensional lattice materials. Phys Rev E 2022; 106:015004. [PMID: 35974615 DOI: 10.1103/physreve.106.015004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
We examine how disordering joint position influences the linear elastic behavior of lattice materials via numerical simulations in two-dimensional beam networks. Three distinct initial crystalline geometries are selected as representative of mechanically isotropic materials with low connectivity, mechanically isotropic materials with high connectivity, and mechanically anisotropic materials with intermediate connectivity. Introducing disorder generates spatial fluctuations in the elasticity tensor at the local (joint) scale. Proper coarse-graining reveals a well-defined continuum-level scale elasticity tensor. Increasing disorder aids in making initially anisotropic materials more isotropic. The disorder impact on the material stiffness depends on the lattice connectivity: Increasing the disorder softens lattices with high connectivity and stiffens those with low connectivity, without modifying the scaling between elastic modulus and density (linear scaling for high connectivity and cubic scaling for low connectivity). Introducing disorder in lattices with intermediate fixed connectivity reveals both scaling: the linear scaling occurs for low density, the cubic one at high density, and the crossover density increases with disorder. Contrary to classical formulations, this work demonstrates that connectivity is not the sole parameter governing elastic modulus scaling. It offers a promising route to access novel mechanical properties in lattice materials via disordering the architectures.
Collapse
Affiliation(s)
- Antoine Montiel
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Thuy Nguyen
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
- Léonard de Vinci Pôle Universitaire, Research Center, 92916 Paris La Défense, France
| | - Cindy L Rountree
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Valérie Geertsen
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Patrick Guenoun
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Daniel Bonamy
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| |
Collapse
|
14
|
Bruns M, Varnik F. Enhanced dynamics in deep thermal cycling of a model glass. J Chem Phys 2022; 156:234501. [PMID: 35732512 DOI: 10.1063/5.0094024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We investigate the effect of low temperature (cryogenic) thermal cycling on dynamics of a generic model glass via molecular dynamics simulations. By calculating mean squared displacements after a varying number of cycles, a pronounced enhancement of dynamics is observed. This rejuvenation effect is visible already after the first cycle and accumulates upon further cycling in an intermittent way. Our data reveal an overall deformation (buckling of the slab-shaped system) modulated by a heterogeneous deformation field due to deep cryogenic thermal cycling. It is shown via strain maps that deformation localizes in the form of shear-bands, which gradually fill the entire sample in a random and intermittent manner, very much similar to the accumulation effect observed in dynamics. While spatial organization of local strain may be connected to the specific geometry, we argue that the heterogeneity of the structure is the main cause behind rejuvenation effects observed in the present study.
Collapse
Affiliation(s)
- Marian Bruns
- Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Fathollah Varnik
- Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
15
|
Ridout SA, Rocks JW, Liu AJ. Correlation of plastic events with local structure in jammed packings across spatial dimensions. Proc Natl Acad Sci U S A 2022; 119:e2119006119. [PMID: 35412897 PMCID: PMC9169794 DOI: 10.1073/pnas.2119006119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
In frictionless jammed packings, existing evidence suggests a picture in which localized physics dominates in low spatial dimensions, d = 2, 3, but quickly loses relevance as d rises, replaced by spatially extended mean-field behavior. For example, quasilocalized low-energy vibrational modes and low-coordination particles associated with deviation from mean-field behavior (rattlers and bucklers) all vanish rapidly with increasing d. These results suggest that localized rearrangements, which are associated with low-energy vibrational modes, correlated with local structure, and dominant in low dimensions, should give way in higher d to extended rearrangements uncorrelated with local structure. Here, we use machine learning to analyze simulations of jammed packings under athermal, quasistatic shear, identifying a local structural variable, softness, that correlates with rearrangements in dimensions d = 2 to d = 5. We find that softness—and even just the local coordination number Z—is essentially equally predictive of rearrangements in all d studied. This result provides direct evidence that local structure plays an important role in higher d, suggesting a modified picture for the dimensional cross-over to mean-field theory.
Collapse
Affiliation(s)
- Sean A. Ridout
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Jason W. Rocks
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrea J. Liu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
16
|
Sharma M, Nandi MK, Bhattacharyya SM. Identifying structural signature of dynamical heterogeneity via the local softness parameter. Phys Rev E 2022; 105:044604. [PMID: 35590668 DOI: 10.1103/physreve.105.044604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
In this work we study the relationship between the softness of a mean-field caging potential and dynamics at the local level. We first describe the local softness, which shows a distribution, thus identifying structural heterogeneity. We show that the lifetime of the softness parameter is connected to the lifetime of the well-known cage structure in supercooled liquids. Finally, our theory predicts that the local softness and the local dynamics is causal below the onset temperature where there is a decoupling between the short and long time dynamics, thus allowing a static description of the cage. With the decrease in temperature, the correlation between structure and dynamics increases. The study shows that at lower temperatures, the structural heterogeneity increases, and since the structure becomes a better predictor of the dynamics, it leads to an increase in the dynamical heterogeneity. We also find that the softness of a hard, immobile region evolves with time and becomes soft and eventually mobile due to the rearrangements in the neighborhood, confirming the well-known facilitation effect.
Collapse
Affiliation(s)
- Mohit Sharma
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune-411008, India
| | - Manoj Kumar Nandi
- Department of Engineering, University of Campania "Luigi Vanvitelli" 81031 Aversa (Caserta), Italy
| | - Sarika Maitra Bhattacharyya
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
17
|
Beltukov YM, Conyuh DA, Solov'yov IA. Local elastic properties of polystyrene nanocomposites increase significantly due to nonaffine deformations. Phys Rev E 2022; 105:L012501. [PMID: 35193276 DOI: 10.1103/physreve.105.l012501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/17/2021] [Indexed: 11/07/2022]
Abstract
We investigate the local elastic properties of polystyrene doped with SiO_{2} nanoparticles by analyzing the local density fluctuations. The density fluctuations were established from coarse-grained molecular dynamics simulations performed with the MARTINI force field. A significant increase in polystyrene stiffness was revealed within a characteristic range of 1.4 nm from the nanoparticle, while polystyrene density saturates to the bulk value at significantly shorter distances. The enhancement of the local elastic properties of the polymer was attributed to the effect of nonaffine deformations at the length scale below 1 nm, which was further confirmed through the random matrix model with variable strength of disorder.
Collapse
Affiliation(s)
- Yaroslav M Beltukov
- Ioffe Institute, Politechnicheskaya Strasse 26, 194021 St. Petersburg, Russia
| | - Dmitry A Conyuh
- Ioffe Institute, Politechnicheskaya Strasse 26, 194021 St. Petersburg, Russia
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany, and Ioffe Institute, Politechnicheskaya Strasse 26, 194021 St. Petersburg, Russia
| |
Collapse
|
18
|
Benzine O, Pan Z, Calahoo C, Bockowski M, Smedskjaer MM, Schirmacher W, Wondraczek L. Vibrational disorder and densification-induced homogenization of local elasticity in silicate glasses. Sci Rep 2021; 11:24454. [PMID: 34961778 PMCID: PMC8712522 DOI: 10.1038/s41598-021-04045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
We report the effect of structural compaction on the statistics of elastic disorder in a silicate glass, using heterogeneous elasticity theory with the coherent potential approximation (HET-CPA) and a log-normal distribution of the spatial fluctuations of the shear modulus. The object of our study, a soda lime magnesia silicate glass, is compacted by hot-compression up to 2 GPa (corresponding to a permanent densification of ~ 5%). Using THz vibrational spectroscopic data and bulk mechanical properties as inputs, HET-CPA evaluates the degree of disorder in terms of the length-scale of elastic fluctuations and the non-affine part of the shear modulus. Permanent densification decreases the extent of non-affine elasticity, resulting in a more homogeneous distribution of strain energy, while also decreasing the correlation length of elastic heterogeneity. Complementary 29Si magic angle spinning NMR spectroscopic data provide a short-range rationale for the effect of compression on glass structure in terms of a narrowing of the Si-O-Si bond-angle and the Si-Si distance.
Collapse
Affiliation(s)
- Omar Benzine
- Otto Schott Institute of Materials Research, University of Jena, 07743, Jena, Germany
| | - Zhiwen Pan
- Otto Schott Institute of Materials Research, University of Jena, 07743, Jena, Germany
| | - Courtney Calahoo
- Otto Schott Institute of Materials Research, University of Jena, 07743, Jena, Germany
| | - Michal Bockowski
- Institute of High-Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland
| | - Morten M Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | | | - Lothar Wondraczek
- Otto Schott Institute of Materials Research, University of Jena, 07743, Jena, Germany.
| |
Collapse
|
19
|
Wang X, Zhang H, Douglas JF. The initiation of shear band formation in deformed metallic glasses from soft localized domains. J Chem Phys 2021; 155:204504. [PMID: 34852471 DOI: 10.1063/5.0069729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has long been thought that shear band (SB) formation in amorphous solids initiates from relatively "soft" regions in the material in which large-scale non-affine deformations become localized. The test of this hypothesis requires an effective means of identifying "soft" regions and their evolution as the material is deformed to varying degrees, where the metric of "softness" must also account for the effect of temperature on local material stiffness. We show that the mean square atomic displacement on a caging timescale ⟨u2⟩, the "Debye-Waller factor," provides a useful method for estimating the shear modulus of the entire material and, by extension, the material stiffness at an atomic scale. Based on this "softness" metrology, we observe that SB formation indeed occurs through the strain-induced formation of localized soft regions in our deformed metallic glass free-standing films. Unexpectedly, the critical strain condition for SB formation occurs when the softness (⟨u2⟩) distribution within the emerging soft regions approaches that of the interfacial region in its undeformed state, initiating an instability with similarities to the transition to turbulence. Correspondingly, no SBs arise when the material is so thin that the entire material can be approximately described as being "interfacial" in nature. We also quantify relaxation in the glass and the nature and origin of highly non-Gaussian particle displacements in the dynamically heterogeneous SB regions at times longer than the caging time.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jack F Douglas
- Material Measurement Laboratory, Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
20
|
Mahajan S, Ciamarra MP. Unifying Description of the Vibrational Anomalies of Amorphous Materials. PHYSICAL REVIEW LETTERS 2021; 127:215504. [PMID: 34860101 DOI: 10.1103/physrevlett.127.215504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The vibrational density of states D(ω) of solids controls their thermal and transport properties. In crystals, the low-frequency modes are extended phonons distributed in frequency according to Debye's law, D(ω)∝ω^{2}. In amorphous solids, phonons are damped, and at low frequency D(ω) comprises extended modes in excess over Debye's prediction, leading to the so-called boson peak in D(ω)/ω^{2} at ω_{bp}, and quasilocalized ones. Here we show that boson peak and phonon attenuation in the Rayleigh scattering regime are related, as suggested by correlated fluctuating elasticity theory, and that amorphous materials can be described as homogeneous isotropic elastic media punctuated by quasilocalized modes acting as elastic heterogeneities. Our numerical results resolve the conflict between theoretical approaches attributing amorphous solids' vibrational anomalies to elastic disorder and localized defects.
Collapse
Affiliation(s)
- Shivam Mahajan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
- CNRS@CREATE LTD, 1 Create Way, #08-01 CREATE Tower, Singapore 138602
- CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| |
Collapse
|
21
|
Pan Z, Benzine O, Sawamura S, Limbach R, Koike A, Bennett TD, Wilde G, Schirmacher W, Wondraczek L. Disorder classification of the vibrational spectra of modern glasses. PHYSICAL REVIEW B 2021; 104:134106. [DOI: 10.1103/physrevb.104.134106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Elastic and Dynamic Heterogeneity in Aging Alginate Gels. Polymers (Basel) 2021; 13:polym13213618. [PMID: 34771174 PMCID: PMC8587450 DOI: 10.3390/polym13213618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Anomalous aging in soft glassy materials has generated a great deal of interest because of some intriguing features of the underlying relaxation process, including the emergence of "ultra-long-range" dynamical correlations. An intriguing possibility is that such a huge correlation length is reflected in detectable ensemble fluctuations of the macroscopic material properties. We tackle this issue by performing replicated mechanical and dynamic light scattering (DLS) experiments on alginate gels, which recently emerged as a good model-system of anomalous aging. Here we show that some of the monitored quantities display wide variability, including large fluctuations in the stress relaxation and the occasional presence of two-step decay in the DLS decorrelation functions. By quantifying elastic fluctuation through the standard deviation of the elastic modulus and dynamic heterogeneities through the dynamic susceptibility, we find that both quantities do increase with the gel age over a comparable range. Our results suggest that large elastic fluctuations are closely related to ultra-long-range dynamical correlation, and therefore may be a general feature of anomalous aging in gels.
Collapse
|
23
|
Fan H, Fan Z, Liu X, Lu Z, Ma E. Atomic vibration as an indicator of the propensity for configurational rearrangements in metallic glasses. MATERIALS HORIZONS 2021; 8:2359-2372. [PMID: 34870291 DOI: 10.1039/d1mh00491c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In a metallic glass (MG), the propensity for atomic rearrangements varies spatially from location to location in the amorphous solid, making the prediction of their likelihood a major challenge. One can attack this problem from the "structure controls properties" standpoint. But all the current structure-centric parameters are mostly based on local atomic packing information limited to short-range order, hence falling short in reliably forecasting how the local region would respond to external stimuli (e.g., temperature and/or stress). Alternatively, one can use indicators informed by physical properties to bridge the static structure on the one hand, and the response of the local configuration on the other. A sub-group of such physics-informed quantities consists of atomic vibration parameters, which will be singled out as the focus of this article. Here we use the Cu64Zr36 alloy to systematically demonstrate the following two points, all using a single model MG. First, we show in a comprehensive manner the interrelation among common vibrational parameters characterizing the atomic vibrational amplitude and frequency, including the atomic mean square displacement, flexibility volume, participation fraction in the low-frequency vibrational modes and boson peak intensity. Second, we demonstrate that these vibrational parameters fare much better than purely static structural parameters based on local geometrical packing in providing correlation with the propensity for local configurational transitions. These vibrational parameters also share a correlation length similar to that in structural rearrangements induced by external stimuli. This success, however, also poses a challenge, as it remains to be elucidated as to why short-time dynamical (vibrational) behavior at the bottom of the energy basin can be exploited to project the height of the energy barrier for cross-basin activities and in turn the propensity for locally collective atomic rearrangements.
Collapse
Affiliation(s)
- Huiyang Fan
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhao Fan
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiongjun Liu
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zhaoping Lu
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China.
| | - En Ma
- Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
24
|
Weigl P, Hecksher T, Dyre JC, Walther T, Blochowicz T. Identity of the local and macroscopic dynamic elastic responses in supercooled 1-propanol. Phys Chem Chem Phys 2021; 23:16537-16541. [PMID: 34312639 DOI: 10.1039/d1cp02671b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glass-forming liquids are well known to have significant dynamic heterogeneities, leading to spatially grossly varying elastic properties throughout the system. In this paper, we compare the local elastic response of supercooled 1-propanol monitored by triplet state solvation dynamics to the macroscopic dynamic shear modulus measured by a piezo-electric gauge. The time-dependent responses are found to be identical, which means that the dynamic macroscopic shear modulus provides a good measure of the average local elastic properties. Since the macroscopic shear modulus of a dynamically inhomogeneous system in general is not just the average of the local moduli, there was no reason to expect such a result. This surprising finding not only provides constraints for models of dynamical heterogeneities in glass-forming liquids, but also allows for a fairly straightforward check on elastic models for glassy dynamics.
Collapse
Affiliation(s)
- Peter Weigl
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany.
| | | | | | | | | |
Collapse
|
25
|
Mols RHM, Vogiatzis GG, van Breemen LCA, Hütter M. Microscopic Carriers of Plasticity in Glassy Polystyrene. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Roy H. M. Mols
- Polymer Technology Department of Mechanical Engineering Eindhoven University of Technology P. O. Box 513 Eindhoven 5600 MB The Netherlands
- Dutch Polymer Institute PO Box 902 Eindhoven 5600 AX The Netherlands
| | - Georgios G. Vogiatzis
- Dutch Polymer Institute PO Box 902 Eindhoven 5600 AX The Netherlands
- School of Chemical Engineering National Technical University of Athens 9 Heroon Polytechniou Street, Zografou Campus Athens GR‐15780 Greece
| | - Lambèrt C. A. van Breemen
- Polymer Technology Department of Mechanical Engineering Eindhoven University of Technology P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Markus Hütter
- Polymer Technology Department of Mechanical Engineering Eindhoven University of Technology P. O. Box 513 Eindhoven 5600 MB The Netherlands
| |
Collapse
|
26
|
Tomoshige N, Goto S, Mizuno H, Mori T, Kim K, Matubayasi N. Understanding the scaling of boson peak through insensitivity of elastic heterogeneity to bending rigidity in polymer glasses. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:274002. [PMID: 33930889 DOI: 10.1088/1361-648x/abfd51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Amorphous materials exhibit peculiar mechanical and vibrational properties, including non-affine elastic responses and excess vibrational states, i.e., the so-called boson peak (BP). For polymer glasses, these properties are considered to be affected by the bending rigidity of the constituent polymer chains. In our recent work [Tomoshige,et al2019,Sci. Rep.919514], we have revealed simple relationships between the variations of vibrational properties and the global elastic properties: the response of the BP scales only with that of the global shear modulus. This observation suggests that the spatial heterogeneity of the local shear modulus distribution is insensitive to changes in the bending rigidity. Here, we demonstrate the insensitivity of elastic heterogeneity by directly measuring the local shear modulus distribution. We also study transverse sound wave propagation, which is also shown to scale only with the global shear modulus. Through these analyses, we conclude that the bending rigidity does not alter the spatial heterogeneity of the local shear modulus distribution, which yields vibrational and acoustic properties that are controlled solely by the global shear modulus of a polymer glass.
Collapse
Affiliation(s)
- Naoya Tomoshige
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shota Goto
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Tatsuya Mori
- Department of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kang Kim
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
27
|
Mahajan S, Chattoraj J, Ciamarra MP. Emergence of linear isotropic elasticity in amorphous and polycrystalline materials. Phys Rev E 2021; 103:052606. [PMID: 34134343 DOI: 10.1103/physreve.103.052606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/22/2021] [Indexed: 11/07/2022]
Abstract
We investigate the emergence of isotropic linear elasticity in amorphous and polycrystalline solids via extensive numerical simulations. We show that the elastic properties are correlated over a finite length scale ξ_{E}, so that the central limit theorem dictates the emergence of continuum linear isotropic elasticity on increasing the specimen size. The stiffness matrix of systems of finite size L>ξ_{E} is obtained, adding to that predicted by linear isotropic elasticity a random one of spectral norm (L/ξ_{E})^{-3/2} in three spatial dimensions. We further demonstrate that the elastic length scale corresponds to that of structural correlations, which in polycrystals reflect the typical size of the grain boundaries and length scales characterizing correlations in the stress field. We finally demonstrate that the elastic length scale affects the decay of the anisotropic long-range correlations of locally defined shear modulus and shear stress.
Collapse
Affiliation(s)
- Shivam Mahajan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Joyjit Chattoraj
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| |
Collapse
|
28
|
Liu C, Dutta S, Chaudhuri P, Martens K. Elastoplastic Approach Based on Microscopic Insights for the Steady State and Transient Dynamics of Sheared Disordered Solids. PHYSICAL REVIEW LETTERS 2021; 126:138005. [PMID: 33861121 DOI: 10.1103/physrevlett.126.138005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
We develop a framework to study the mechanical response of athermal amorphous solids via a coupling of mesoscale and microscopic models. Using measurements of coarse-grained quantities from simulations of dense disordered particulate systems, we present a coherent elastoplastic model approach for deformation and flow of yield stress materials. For a given set of parameters, this model allows us to match consistently transient and steady state features of driven disordered systems with diverse preparation histories under both applied shear-rate and creep protocols.
Collapse
Affiliation(s)
- Chen Liu
- Laboratoire de Physique de l'Ecole Normale Suprieure, 75005 Paris, France
| | - Suman Dutta
- The Institute of Mathematical Sciences, Taramani, Chennai 600113, India
| | - Pinaki Chaudhuri
- The Institute of Mathematical Sciences, Taramani, Chennai 600113, India
| | | |
Collapse
|
29
|
Fan Z, Ma E. Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning. Nat Commun 2021; 12:1506. [PMID: 33686082 PMCID: PMC7940643 DOI: 10.1038/s41467-021-21806-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/12/2021] [Indexed: 11/25/2022] Open
Abstract
It has been a long-standing materials science challenge to establish structure-property relations in amorphous solids. Here we introduce a rotationally non-invariant local structure representation that enables different predictions for different loading orientations, which is found essential for high-fidelity prediction of the propensity for stress-driven shear transformations. This novel structure representation, when combined with convolutional neural network (CNN), a powerful deep learning algorithm, leads to unprecedented accuracy for identifying atoms with high propensity for shear transformations (i.e., plastic susceptibility), solely from the static structure in both two- and three-dimensional model glasses. The data-driven models trained on samples at one composition and a given processing history are found transferrable to glass samples with different processing histories or at different compositions in the same alloy system. Our analysis of the new structure representation also provides valuable insight into key atomic packing features that influence the local mechanical response and its anisotropy in glasses.
Collapse
Affiliation(s)
- Zhao Fan
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Evan Ma
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
30
|
Kapteijns G, Richard D, Bouchbinder E, Lerner E. Elastic moduli fluctuations predict wave attenuation rates in glasses. J Chem Phys 2021; 154:081101. [DOI: 10.1063/5.0038710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Geert Kapteijns
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - David Richard
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Albaret T, Boioli F, Rodney D. Time-resolved shear transformations in the transient plastic regime of sheared amorphous silicon. Phys Rev E 2020; 102:053003. [PMID: 33327176 DOI: 10.1103/physreve.102.053003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/12/2020] [Indexed: 11/07/2022]
Abstract
The accumulation of shear transformations (STs) in space and time is responsible for plastic deformation in amorphous solids. Here we study the effect of finite strain rates on STs during simulations of athermal shear deformation in an atomistic model of amorphous silicon. We present a time-resolved analysis of STs by mapping the plastic events identified in the atomistic simulations on a collection of Eshelby inclusions, which are characterized in terms of number, effective volume, lifetime, and orientation. Our analysis led us to distinguish between small and large events. We find that the main effect of a lower strain rate is to allow for a larger number of small events, roughly identified by an effective volume γ_{0}V_{0}<20 Å^{3}, while the number and characteristics of larger events are surprisingly independent of the strain rate. We show that at low strains, the decrease of the stress observed at lower strain rates is mainly due to the excess of small events, while at larger strains, when the glass approaches the yield point where a shear band forms, larger events start to play a role and organize due to their elastic interactions. This phenomenology is compared with the predictions of mesoscale elastoplastic models. The technique developed here can be used as a systematic tool to analyze plasticity during molecular dynamics simulations. It can also give valuable information to develop physically grounded mesoscale models of plasticity, providing quantitative predictions of the mechanical properties of amorphous materials.
Collapse
Affiliation(s)
- Tristan Albaret
- Institut Lumière Matière, University of Lyon 1, Villeurbanne 69622, France
| | - Francesca Boioli
- Institut Lumière Matière, University of Lyon 1, Villeurbanne 69622, France
| | - David Rodney
- Institut Lumière Matière, University of Lyon 1, Villeurbanne 69622, France
| |
Collapse
|
32
|
Caroli C, Lemaître A. Key role of retardation and non-locality in sound propagation in amorphous solids as evidenced by a projection formalism. J Chem Phys 2020; 153:144502. [PMID: 33086830 DOI: 10.1063/5.0019964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We investigate acoustic propagation in amorphous solids by constructing a projection formalism based on separating atomic vibrations into two, "phonon" (P) and "non-phonon" (NP), subspaces corresponding to large and small wavelengths. For a pairwise interaction model, we show the existence of a "natural" separation lengthscale, determined by structural disorder, for which the isolated P subspace presents the acoustic properties of a nearly homogenous (Debye-like) elastic continuum, while the NP one encapsulates all small scale non-affinity effects. The NP eigenstates then play the role of dynamical scatterers for the phonons. However, at variance with a conjecture of defect theories, their spectra present a finite low frequency gap, which turns out to lie around the Boson peak frequency, and only a small fraction of them are highly localized. We then show that small scale disorder effects can be rigorously reduced to the existence, in the Navier-like wave equation of the continuum, of a generalized elasticity tensor, which is not only retarded, since scatterers are dynamical, but also non-local. The full neglect of both retardation and non-locality suffices to account for most of the corrections to Born macroscopic moduli. However, these two features are responsible for sound speed dispersion and have quite a significant effect on the magnitude of sound attenuation. Although it remains open how they impact the asymptotic, large wavelength scaling of sound damping, our findings rule out the possibility of representing an amorphous solid by an inhomogeneous elastic continuum with the standard (i.e., local and static) elastic moduli.
Collapse
Affiliation(s)
- Christiane Caroli
- Sorbonne Universités, UPMC Université Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 Place Jussieu, 75005 Paris, France
| | - Anaël Lemaître
- NAVIER, UMR 8205, École des Ponts ParisTech, IFSTTAR, CNRS, UPE, Champs-sur-Marne, France
| |
Collapse
|
33
|
Ruscher C, Rottler J. Residual stress distributions in amorphous solids from atomistic simulations. SOFT MATTER 2020; 16:8940-8949. [PMID: 32901650 DOI: 10.1039/d0sm01155j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The distribution of local residual stresses (threshold to instability) that controls the statistical properties of plastic flow in athermal amorphous solids is examined with an atomistic simulation technique. For quiescent configurations, the distribution has a pseudogap (power-law) form with an exponent that agrees well with global yielding statistics. As soon as deformation sets in, the pseudogap region gives way to a system size dependent plateau at small residual stresses that can be understood from the statistics of local residual stress differences between plastic events. Results further suggest that the local yield stress in amorphous solids changes even if the given region does not participate in plastic activity.
Collapse
Affiliation(s)
- Céline Ruscher
- Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France. and Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| | - Jörg Rottler
- Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
34
|
Yang J, Duan J, Wang YJ, Jiang MQ. Complexity of plastic instability in amorphous solids: Insights from spatiotemporal evolution of vibrational modes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:56. [PMID: 32920738 DOI: 10.1140/epje/i2020-11983-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
It has been accepted that low-frequency vibrational modes are causally correlated to fundamental plastic rearrangement events in amorphous solids, irrespective of the structural details. But the mode-event relationship is far from clear. In this work, we carry out case studies using atomistic simulations of a three-dimensional Cu50Zr50 model glass under athermal, quasistatic shear. We focus on the first four plastic events, and carefully trace the spatiotemporal evolution of the associated low-frequency normal modes with applied shear strain. We reveal that these low-frequency modes get highly entangled with each other, from which the critical mode emerges spontaneously to predict a shear transformation event. But the detailed emergence picture is event by event and shear-protocol dependent, even for the first plastic event. This demonstrates that the instability of a plastic event is a result of extremely complex multiple-path choice or competition, and there is a strong, elastic interaction among neighboring instability events. At last, the generality of the present findings is shown to be applicable to covalent-bonded glasses.
Collapse
Affiliation(s)
- J Yang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
| | - J Duan
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Y J Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - M Q Jiang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Engineering Science, University of Chinese Academy of Sciences, 101408, Beijing, China.
| |
Collapse
|
35
|
Ebrahem F, Bamer F, Markert B. Origin of reversible and irreversible atomic-scale rearrangements in a model two-dimensional network glass. Phys Rev E 2020; 102:033006. [PMID: 33076029 DOI: 10.1103/physreve.102.033006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023]
Abstract
In this contribution, we investigate the fundamental mechanism of plasticity in a model two-dimensional network glass. The glass is generated by using a Monte Carlo bond-switching algorithm and subjected to athermal simple shear deformation, followed by subsequent unloading at selected deformation states. This enables us to investigate the topological origin of reversible and irreversible atomic-scale rearrangements. It is shown that some events that are triggered during loading recover during unloading, while some do not. Thus, two kinds of elementary plastic events are observed, which can be linked to the network topology of the model glass.
Collapse
Affiliation(s)
- Firaz Ebrahem
- Institute of General Mechanics, RWTH Aachen University, 52062 Aachen, Germany
| | - Franz Bamer
- Institute of General Mechanics, RWTH Aachen University, 52062 Aachen, Germany
| | - Bernd Markert
- Institute of General Mechanics, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
36
|
Luo H, Gravouil A, Giordano VM, Schirmacher W, Tanguy A. Continuum constitutive laws to describe acoustic attenuation in glasses. Phys Rev E 2020; 102:033003. [PMID: 33075991 DOI: 10.1103/physreve.102.033003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Nowadays metamaterials are at the focus of an intense research as promising for thermal and acoustic engineering. However, the computational cost associated to the large system size required for correctly simulating them imposes the use of finite-elements simulations, developing continuum models, able to grasp the physics at play without entering in the atomistic details. Still, a correct description should be able to reproduce not only the extrinsic scattering sources on waves propagation, as introduced by the metamaterial microstructure, but also the intrinsic wave attenuation of the material itself. This becomes dramatically important when the metamaterial is made out of a glass, which is intrinsically highly dissipative and with a wave attenuation strongly dependent on frequency. Here we propose a continuum mechanical model for a viscoelastic medium, able to bridge atomic and macroscopic scale in amorphous materials and describe phonon attenuation due to atomistic mechanisms, characterized by a defined frequency dependence. This represents a first decisive step for investigating the effect of a complex nano- or microstructure on acoustic attenuation, while including the atomistic contribution as well.
Collapse
Affiliation(s)
- H Luo
- LaMCos, INSA-Lyon, CNRS UMR5259, Université de Lyon, F-69621 Villeurbanne Cedex, France
| | - A Gravouil
- LaMCos, INSA-Lyon, CNRS UMR5259, Université de Lyon, F-69621 Villeurbanne Cedex, France
| | - V M Giordano
- Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, F-69622 Villeurbanne Cedex, France
| | - W Schirmacher
- Institut für Physik, Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - A Tanguy
- LaMCos, INSA-Lyon, CNRS UMR5259, Université de Lyon, F-69621 Villeurbanne Cedex, France and ONERA, University Paris-Saclay, Chemin de la Huniére, BP 80100, 92123 Palaiseau, France
| |
Collapse
|
37
|
Voigtmann T, Siebenbürger M, Amann CP, Egelhaaf SU, Fritschi S, Krüger M, Laurati M, Mutch KJ, Samwer KH. Rheology of colloidal and metallic glass formers. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04654-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractColloidal hard-sphere suspensions are convenient experimental models to understand soft matter, and also by analogy the structural-relaxation behavior of atomic or small-molecular fluids. We discuss this analogy for the flow and deformation behavior close to the glass transition. Based on a mapping of temperature to effective hard-sphere packing, the stress–strain curves of typical bulk metallic glass formers can be quantitatively compared with those of hard-sphere suspensions. Experiments on colloids give access to the microscopic structure under deformation on a single-particle level, providing insight into the yielding mechanisms that are likely also relevant for metallic glasses. We discuss the influence of higher-order angular signals in connection with non-affine particle rearrangements close to yielding. The results are qualitatively explained on the basis of the mode-coupling theory. We further illustrate the analogy of pre-strain dependence of the linear-elastic moduli using data on PS-PNiPAM suspensions.
Collapse
|
38
|
Barbot A, Lerbinger M, Lemaître A, Vandembroucq D, Patinet S. Rejuvenation and shear banding in model amorphous solids. Phys Rev E 2020; 101:033001. [PMID: 32289951 DOI: 10.1103/physreve.101.033001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
We measure the local yield stress, at the scale of small atomic regions, in a deeply quenched two-dimensional glass model undergoing shear banding in response to athermal quasistatic deformation. We find that the occurrence of essentially a single plastic event suffices to bring the local yield stress distribution to a well-defined value for all strain orientations, thus essentially erasing the memory of the initial structure. It follows that in a well-relaxed sample, plastic events cause the abrupt (nucleation-like) emergence of a local softness contrast and thus precipitate the formation of a band, which, in its early stages, is measurably softer than the steady-state flow. Moreover, this postevent yield stress ensemble presents a mean value comparable to that of the inherent states of a supercooled liquid around the mode-coupling temperature T_{MCT}. This, we argue, explains that the transition between brittle and ductile yielding in amorphous materials occurs around a comparable parent temperature. Our data also permit to capture quantitatively the contributions of pressure and density changes and demonstrate unambiguously that they are negligible compared with the changes of softness caused by structural rejuvenation.
Collapse
Affiliation(s)
- Armand Barbot
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Matthias Lerbinger
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Anaël Lemaître
- Université Paris-Est, Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR, F-77420 Marne-la-Vallée, France
| | - Damien Vandembroucq
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Sylvain Patinet
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
| |
Collapse
|
39
|
Shakerpoor A, Flenner E, Szamel G. Stability dependence of local structural heterogeneities of stable amorphous solids. SOFT MATTER 2020; 16:914-920. [PMID: 31868871 DOI: 10.1039/c9sm02022e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The universal anomalous vibrational and thermal properties of amorphous solids are believed to be related to the local variations of the elasticity. Recently it has been shown that the vibrational properties are sensitive to the glass's stability. Here we study the stability dependence of the local elastic constants of a simulated glass former over a broad range of stabilities, from a poorly annealed glass to a glass whose stability is comparable to laboratory exceptionally stable vapor deposited glasses. We show that with increasing stability the glass becomes more uniform as evidenced by a smaller variance of local elastic constants. We find that, according to the definition of local elastic moduli used in this work, the local elastic moduli are not spatially correlated.
Collapse
Affiliation(s)
- Alireza Shakerpoor
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| |
Collapse
|
40
|
Tyukodi B, Vandembroucq D, Maloney CE. Avalanches, thresholds, and diffusion in mesoscale amorphous plasticity. Phys Rev E 2019; 100:043003. [PMID: 31770912 DOI: 10.1103/physreve.100.043003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 06/10/2023]
Abstract
We present results on a mesoscale model for amorphous matter in athermal, quasistatic (a-AQS), steady-state shear flow. In particular, we perform a careful analysis of the scaling with the lateral system size L of (i) statistics of individual relaxation events in terms of stress relaxation S, and individual event mean-squared displacement M, and the subsequent load increments Δγ, required to initiate the next event; (ii) static properties of the system encoded by x=σ_{y}-σ, the distance of local stress values from threshold; and (iii) long-time correlations and the emergence of diffusive behavior. For the event statistics, we find that the distribution of S is similar to, but distinct from, the distribution of M. We find a strong correlation between S and M for any particular event, with S∼M^{q} with q≈0.65. The exponent q completely determines the scaling exponents for P(M) given those for P(S). For the distribution of local thresholds, we find P(x) is analytic at x=0, and has a value P(x)|_{x=0}=p_{0} which scales with lateral system length as p_{0}∝L^{-0.6}. The size dependence of the average load increment 〈Δγ〉 appears to be asymptotically controlled by the plateau behavior of P(x) rather than by a subsequent apparent power-law behavior. Extreme value statistics arguments lead thus to a scaling relation between the exponents governing P(x) and those governing P(S). Finally, we study the long-time correlations via single-particle tracer statistics. The value of the diffusion coefficient is completely determined by 〈Δγ〉 and the scaling properties of P(M) (in particular from 〈M〉) rather than directly from P(S) as one might have naively guessed. Our results (i) further define the a-AQS universality class, (ii) clarify the relation between avalanches of stress relaxation and diffusive behavior, and (iii) clarify the relation between local threshold distributions and event statistics.
Collapse
Affiliation(s)
- Botond Tyukodi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Damien Vandembroucq
- PMMH, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Craig E Maloney
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
41
|
Caroli C, Lemaître A. Fluctuating Elasticity Fails to Capture Anomalous Sound Scattering in Amorphous Solids. PHYSICAL REVIEW LETTERS 2019; 123:055501. [PMID: 31491325 DOI: 10.1103/physrevlett.123.055501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 06/10/2023]
Abstract
The fluctuating elasticity (FE) model, introduced phenomenologically and developed by Schirmacher [J. Non-Cryst. Solids 357, 518 (2011)JNCSBJ0022-309310.1016/j.jnoncrysol.2010.07.052], is today the only theoretical framework available to analyze low-temperature elastic acoustic scattering in glasses. Its existing formulations, which neglect the tensorial nature of elasticity and exclude long-range disorder correlations, predict that the acoustic damping coefficients obey the standard Rayleigh scaling law: Γ∼k^{d+1}, with k the acoustic wave vector, in dimension d. However, recent numerical data, supported by the analysis of existing experimental results, show that Γ does not obey this scaling law but Γ∼-k^{d+1}lnk. Here we analyze in detail how a fully tensorial FE model can be constructed as a long wavelength approximation of the elastic response of the discrete, atomistic, problem. We show that, although it incorporates all long-range correlations, it fails to capture the observed damping in two respects: (i) it misses the anomalous scaling, and predicts the standard Rayleigh law; (ii) it grossly underestimates the amplitude of scattering by about 2 orders of magnitude. This brings clear evidence that the small scale nonaffine displacement fields, although not simply reducible to local defects, play a crucial role in acoustic wave scattering and hence cannot be ignored.
Collapse
Affiliation(s)
- Christiane Caroli
- Sorbonne Universités, UPMC Université Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Anaël Lemaître
- Laboratoire Navier, UMR 8205, École des Ponts, IFSTTAR, CNRS, UPE, Champs-sur-Marne, France
| |
Collapse
|
42
|
Berthier L, Biroli G, Charbonneau P, Corwin EI, Franz S, Zamponi F. Gardner physics in amorphous solids and beyond. J Chem Phys 2019; 151:010901. [PMID: 31272167 DOI: 10.1063/1.5097175] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
One of the most remarkable predictions to emerge out of the exact infinite-dimensional solution of the glass problem is the Gardner transition. Although this transition was first theoretically proposed a generation ago for certain mean-field spin glass models, its materials relevance was only realized when a systematic effort to relate glass formation and jamming was undertaken. A number of nontrivial physical signatures associated with the Gardner transition have since been considered in various areas, from models of structural glasses to constraint satisfaction problems. This perspective surveys these recent advances and discusses the novel research opportunities that arise from them.
Collapse
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Giulio Biroli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | | | - Eric I Corwin
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - Silvio Franz
- LPTMS, UMR 8626, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Francesco Zamponi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
43
|
Richard D, Speck T. Classical nucleation theory for the crystallization kinetics in sheared liquids. Phys Rev E 2019; 99:062801. [PMID: 31330660 DOI: 10.1103/physreve.99.062801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 06/10/2023]
Abstract
While statistical mechanics provides a comprehensive framework for the understanding of equilibrium phase behavior, predicting the kinetics of phase transformations remains a challenge. Classical nucleation theory (CNT) provides a thermodynamic framework to relate the nucleation rate to thermodynamic quantities such as pressure difference and interfacial tension through the nucleation work necessary to spawn critical nuclei. However, it remains unclear whether such an approach can be extended to the crystallization of driven melts that are subjected to mechanical stresses and flows. Here, we demonstrate numerically for hard spheres that the impact of simple shear on the crystallization rate can be rationalized within the CNT framework by an additional elastic work proportional to the droplet volume. We extract the local stress and strain inside solid droplets, which yield size-dependent values for the shear modulus that are about half of the bulk value. Finally, we show that for a complete description one also has to take into account the change of interfacial work between the strained droplet and the sheared liquid. From scaling reasons, we expect this extra contribution to dominate the work formation of small nuclei but become negligible compared to the elastic work for droplets composed of a few hundreds of particles.
Collapse
Affiliation(s)
- David Richard
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
44
|
Schwartzman-Nowik Z, Lerner E, Bouchbinder E. Anisotropic structural predictor in glassy materials. Phys Rev E 2019; 99:060601. [PMID: 31330726 DOI: 10.1103/physreve.99.060601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 06/10/2023]
Abstract
There is growing evidence that relaxation in glassy materials, both spontaneous and externally driven, is mediated by localized soft spots. Recent progress made it possible to identify the soft spots inside glassy structures and to quantify their degree of softness. These softness measures, however, are typically scalars, not taking into account the tensorial, anisotropic nature of soft spots, which implies orientation-dependent coupling to external deformation. Here, we derive from first principles the linear response coupling between the local heat capacity of glasses, previously shown to provide a measure of glassy softness, and external deformation in different directions. We first show that this linear response quantity follows an anomalous, fat-tailed distribution related to the universal ω^{4} density of states of quasilocalized, nonphononic excitations in glasses. We then construct a structural predictor as the product of the local heat capacity and its linear response to external deformation, and show that it offers an enhanced predictability of plastic rearrangements under deformation in different directions, compared to the purely scalar predictor.
Collapse
Affiliation(s)
- Zohar Schwartzman-Nowik
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
45
|
Tong H, Hu H, Tan P, Xu N, Tanaka H. Revealing Inherent Structural Characteristics of Jammed Particulate Packings. PHYSICAL REVIEW LETTERS 2019; 122:215502. [PMID: 31283321 DOI: 10.1103/physrevlett.122.215502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 06/09/2023]
Abstract
We look for inherent structural characteristics hidden behind amorphous solid formation by using zero-temperature jammed packings of frictionless particles as models. Differently from previous geometrical approaches, we introduce a microscopic mechanical or vibrational order parameter Ψ, which characterizes the susceptibility of particle motion to infinitesimal thermal excitation. We show that (i) the distribution of Ψ has a power-law tail toward high Ψ and (ii) the spatial organization of Ψ is characterized by a nontrivial scale-free correlation. Both findings (i) and (ii) are regarded as a real-space manifestation of marginal stability due to critical self-organization of jammed packings toward mechanical equilibrium. Furthermore, we find that the power-law exponent of the Ψ distribution tail shows a critical-like scaling behavior toward the unjamming transition, which unveils an intriguing interplay between jamming criticality and marginal stability. Our microscopic order parameter provides new structural insights into the marginal stability and instability of jammed packings and may shed light on the important common structural feature of amorphous solids.
Collapse
Affiliation(s)
- Hua Tong
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Hao Hu
- School of Physics and Materials Science, Anhui University, Hefei 230601, People's Republic of China
| | - Peng Tan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Ning Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
46
|
Onuki A, Kawasaki T. Theory of applying shear strains from boundary walls: Linear response in glasses. J Chem Phys 2019; 150:124504. [PMID: 30927885 DOI: 10.1063/1.5082154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We construct a linear response theory of applying shear deformations from boundary walls in the film geometry in Kubo's theoretical scheme. Our method is applicable to any solids and fluids. For glasses, we assume quasi-equilibrium around a fixed inherent state. Then, we obtain linear-response expressions for any variables including the stress and the particle displacements, even though the glass interior is elastically inhomogeneous. In particular, the shear modulus can be expressed in terms of the correlations between the interior stress and the forces from the walls. It can also be expressed in terms of the inter-particle correlations, as has been shown in the previous literature. Our stress relaxation function includes the effect of the boundary walls and can be used for inhomogeneous flow response. We show the presence of long-ranged, long-lived correlations among the fluctuations of the forces from the walls and the displacements of all the particles in the cell. We confirm these theoretical results numerically in a two-dimensional model glass. As an application, we describe emission and propagation of transverse sounds after boundary wall motions using these time-correlation functions. We also find resonant sound amplification when the frequency of an oscillatory shear approaches that of the first transverse sound mode.
Collapse
Affiliation(s)
- Akira Onuki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
47
|
Shang B, Rottler J, Guan P, Barrat JL. Local versus Global Stretched Mechanical Response in a Supercooled Liquid near the Glass Transition. PHYSICAL REVIEW LETTERS 2019; 122:105501. [PMID: 30932637 DOI: 10.1103/physrevlett.122.105501] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Amorphous materials have a rich relaxation spectrum, which is usually described in terms of a hierarchy of relaxation mechanisms. In this work, we investigate the local dynamic modulus spectra in a model glass just above the glass transition temperature by performing a mechanical spectroscopy analysis with molecular dynamics simulations. We find that the spectra, at the local as well as on the global scale, can be well described by the Cole-Davidson formula in the frequency range explored with simulations. Surprisingly, the Cole-Davidson stretching exponent does not change with the size of the local region that is probed. The local relaxation time displays a broad distribution, as expected based on dynamic heterogeneity concepts, but the stretching is obtained independently of this distribution. We find that the size dependence of the local relaxation time and moduli can be well explained by the elastic shoving model.
Collapse
Affiliation(s)
- Baoshuang Shang
- Beijing Computational Science Research Center, Beijing 100193, China
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Jörg Rottler
- Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Pengfei Guan
- Beijing Computational Science Research Center, Beijing 100193, China
| | | |
Collapse
|
48
|
Trazkovich AJ, Wendt MF, Hall LM. Effect of Copolymer Sequence on Local Viscoelastic Properties near a Nanoparticle. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Alex J. Trazkovich
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 W 19th Ave., Columbus, Ohio 43210, United States
- Cooper Tire & Rubber Company, 701 Lima Ave., Findlay, Ohio 45840, United States
| | - Mitchell F. Wendt
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 W 19th Ave., Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 W 19th Ave., Columbus, Ohio 43210, United States
| |
Collapse
|
49
|
Hoy RS. Thermalization of plastic flow versus stationarity of thermomechanical equilibrium in SGR theory. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:2. [PMID: 30617641 DOI: 10.1140/epje/i2019-11763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
We discuss issues related to thermalization of plastic flow in the context of soft glassy rheology (SGR) theory. An apparent problem with the theory in its current form is that the stationarity of thermomechanical equilibrium obtained by requiring that its flow rule satisfy detailed balance in the absence of applied deformation requires plastic flow to be athermal. This prevents proper application of SGR to small-molecule and polymer glasses where plastic flow is often well thermalized. Clearly, one would like to have a SGR-like theory of thermalized plastic flow that satisfies stationarity. We discuss reasons why such a theory could prove very useful and clarify obstacles that must be overcome in order to develop it.
Collapse
Affiliation(s)
- Robert S Hoy
- Department of Physics, University of South Florida, 33620, Tampa, FL, USA.
| |
Collapse
|
50
|
Giuntoli A, Leporini D. Boson Peak Decouples from Elasticity in Glasses with Low Connectivity. PHYSICAL REVIEW LETTERS 2018; 121:185502. [PMID: 30444381 DOI: 10.1103/physrevlett.121.185502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/07/2018] [Indexed: 06/09/2023]
Abstract
We perform molecular-dynamics simulations of the vibrational and elastoplastic properties of polymeric glasses and crystals and the corresponding atomic systems. We evidence that the elastic scaling of the density of states in the low-frequency boson peak (BP) region is different in crystals and glasses. Also, we see that the BP of the polymeric glass is nearly coincident with the one of the atomic glasses, thus revealing that the former-unlike the elasticity-is controlled by nonbonding interactions only. Our results suggest that the interpretation of the BP in terms of the macroscopic elasticity, discussed in highly connected systems, does not hold for systems with low connectivity.
Collapse
Affiliation(s)
- A Giuntoli
- Dipartimento di Fisica "Enrico Fermi," Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| | - D Leporini
- Dipartimento di Fisica "Enrico Fermi," Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy and Istituto per i Processi Chimico-Fisici-Consiglio Nazionale delle Ricerche (IPCF-CNR), via Giuseppe Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|