1
|
Sheng A, Su Q, Wang L, Plotkin JB. Strategy evolution on higher-order networks. NATURE COMPUTATIONAL SCIENCE 2024; 4:274-284. [PMID: 38622347 DOI: 10.1038/s43588-024-00621-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Cooperation is key to prosperity in human societies. Population structure is well understood as a catalyst for cooperation, where research has focused on pairwise interactions. But cooperative behaviors are not simply dyadic, and they often involve coordinated behavior in larger groups. Here we develop a framework to study the evolution of behavioral strategies in higher-order population structures, which include pairwise and multi-way interactions. We provide an analytical treatment of when cooperation will be favored by higher-order interactions, accounting for arbitrary spatial heterogeneity and nonlinear rewards for cooperation in larger groups. Our results indicate that higher-order interactions can act to promote the evolution of cooperation across a broad range of networks, in public goods games. Higher-order interactions consistently provide an advantage for cooperation when interaction hyper-networks feature multiple conjoined communities. Our analysis provides a systematic account of how higher-order interactions modulate the evolution of prosocial traits.
Collapse
Affiliation(s)
- Anzhi Sheng
- Center for Systems and Control, College of Engineering, Peking University, Beijing, China
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi Su
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China.
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China.
- Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai, China.
| | - Long Wang
- Center for Systems and Control, College of Engineering, Peking University, Beijing, China.
- Center for Multi-Agent Research, Institute for Artificial Intelligence, Peking University, Beijing, China.
| | - Joshua B Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Mathematical Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Evolutionary dynamics under partner preferences. J Theor Biol 2023; 557:111340. [PMID: 36343667 DOI: 10.1016/j.jtbi.2022.111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
The fact that people often have preference rankings for their partners is a distinctive aspect of human behavior. Little is known, however, about how this talent as a powerful force shapes human behavioral traits, including those which should not have been favored by selection, such as cooperation in social dilemma situations. Here we propose a dynamic model in which network-structured individuals can switch their interaction partners within neighborhoods based on their preferences. For the partner switching, we propose two interruption regimes: dictatorial regime and negotiating regime. In the dictatorial regime, focal individuals are able to suspend interactions out of preferences unilaterally. In the negotiating regime, either focal individuals or the associated partners agree to suspend, then these interactions can be successfully suspended. We investigate the evolution of cooperation under both preference-driven partner switching regimes in the context of both the weakened variant of the donation game and the standard one. Specifically, we theoretically approximate the critical conditions for cooperation to be favored by weak selection in the weakened donation game where cooperators bear a unit cost to provide a benefit for each active neighbor and simulate the evolutionary dynamics of cooperation in the standard donation game to test the robustness of the analytical results. Under dictatorial regime, selection of cooperation becomes harder when individuals have preferences for either cooperator or defector partners, implying that the expulsion of defectors by cooperators is overwhelmed by the chasing of defectors towards cooperators. Under negotiating regime, both preferences for cooperator and defector partners can significantly favor the evolution of cooperation, yet underlying mechanisms differ greatly. For preferences over cooperator partners, cooperator-cooperator interaction relationships are reinforced and the associated mutual reciprocity can resist and assimilate defectors. For preferences over defector partners, defector-defector interaction relationships are anchored, weakening defectors' exploitation over cooperators. Cooperators are thus offered much time space to interact among cospecies and spread. Our work may help better understand the critical role of preference-based adaptive partner switching in promoting the evolution of cooperation.
Collapse
|
3
|
Li L, Chen C, Li A. Autonomy promotes the evolution of cooperation in prisoner's dilemma. Phys Rev E 2020; 102:042402. [PMID: 33212636 DOI: 10.1103/physreve.102.042402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/31/2020] [Indexed: 11/07/2022]
Abstract
Population structure has been widely reported to foster cooperation in spatially structured populations, where individuals interact with all of their network neighbors defined by the spatial structure in each generation. However, most results rely on the assumption that individuals strictly interact with all of their neighbors during evolution. In reality, human beings, with sophisticated psychology, are willing to interact with some of their neighbors from time to time. Thus, individuals may not play games with all neighbors due to their psychological factors. Here we investigate how the autonomy, one of the basic psychological needs, affects the fate of cooperators in various social networks. By constructing a dynamical effective network, we find that the introduction of autonomy favors cooperative behavior. Further systematical studies by eliminating heterogeneity and the dynamic characteristics of the network reveal that autonomy plays a pivotal role in the evolution of cooperation. Moreover, we find that a moderate effective network degree, defined by the product of the original network degree and the level of autonomy, maximizes the cooperation on networks connecting individuals with fixed neighbors. Our results offer a possible way for organizations to improve individuals' cooperation and shed light on the importance of individuals' psychology on the evolution of cooperation.
Collapse
Affiliation(s)
- Liang Li
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz 78547, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78547, Germany; and Department of Biology, University of Konstanz, Konstanz 78547, Germany
| | - Chen Chen
- Department of Human Resource and Organizational Behavior, School of Business, University of International Business and Economics, Beijing 100029, People's Republic of China
| | - Aming Li
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom and Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
4
|
Armano G, Javarone MA. The Beneficial Role of Mobility for the Emergence of Innovation. Sci Rep 2017; 7:1781. [PMID: 28496113 PMCID: PMC5431937 DOI: 10.1038/s41598-017-01955-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/05/2017] [Indexed: 11/29/2022] Open
Abstract
Innovation is a key ingredient for the evolution of several systems, including social and biological ones. Focused investigations and lateral thinking may lead to innovation, as well as serendipity and other random discovery processes. Some individuals are talented at proposing innovation (say innovators), while others at deeply exploring proposed novelties, at getting further insights on a theory, or at developing products, services, and so on (say developers). This separation in terms of innovators and developers raises an issue of paramount importance: under which conditions a system is able to maintain innovators? According to a simple model, this work investigates the evolutionary dynamics that characterize the emergence of innovation. In particular, we consider a population of innovators and developers, in which agents form small groups whose composition is crucial for their payoff. The latter depends on the heterogeneity of the formed groups, on the amount of innovators they include, and on an award-factor that represents the policy of the system for promoting innovation. Under the hypothesis that a "mobility" effect may support the emergence of innovation, we compare the equilibria reached by our population in different cases. Results confirm the beneficial role of "mobility", and the emergence of further interesting phenomena.
Collapse
Affiliation(s)
- Giuliano Armano
- Department of Electronics and Computer Engineering, University of Cagliari, Cagliari, 09123, Italy
| | - Marco Alberto Javarone
- Department of Mathematics and Computer Science, University of Cagliari, Cagliari, 09123, Italy.
| |
Collapse
|
5
|
Wang X, Zhang L, Du X. The Effectiveness of Reward and Punishment in Spatial Social Games. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS 2017. [DOI: 10.1142/s1469026817500079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Punishment and reward are usually regarded as two potential mechanisms to explain the evolution of cooperation especially among multiple participators. However, the performance of these two scenarios in spatial environment needs to be discussed. To figure out this issue, we resort to the [Formula: see text]-player Iterated Snowdrift Dilemma (ISD) game and Iterated Prisoner’s Dilemma (IPD) game. More importantly, the evolution of punishment and reward in social network-structured populations has not been formally addressed. The numerical results show the equilibrium cooperation frequency can be influenced by cost-to-benefit ratio [Formula: see text], the punishment-to-benefit ratio [Formula: see text] and the reward-to-benefit ratio [Formula: see text]. And one intriguing observation is that under the same situation, the punishment is more effective than reward to the population. Then we further probe the effectiveness of neighborhood relationship to the cooperation, which is reflected by the random rewired probability [Formula: see text]. From the distribution of the four roles of the participator we can find that individuals can cooperate easily when they have close relationship. The results of this paper may be helpful to understand the cooperation in complex project or among industry–university–research cooperation project.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, Guangdong 528400, China
| | - Lei Zhang
- School of Physics and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiaorong Du
- School of Physics and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
6
|
Szolnoki A, Chen X. Cooperation driven by success-driven group formation. Phys Rev E 2016; 94:042311. [PMID: 27841629 DOI: 10.1103/physreve.94.042311] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Indexed: 11/07/2022]
Abstract
In the traditional setup of the public goods game all players are involved in every available group and the mutual benefit is shared among competing cooperator and defector strategies. However, in real life situations the group formation of players could be more sophisticated because not all players are attractive enough for others to participate in a joint venture. What if only those players who are successful enough to the neighbors can initiate a group formation and establish a game? To elaborate this idea we employ a modified protocol and demonstrate that a carefully chosen threshold to establish a joint venture could efficiently improve the cooperation level even if the synergy factor would suggest a full defector state otherwise. The microscopic mechanism that is responsible for this effect is based on the asymmetric consequences of competing strategies: while the success of a cooperator provides a long-time well-being for the neighborhood, the temporary advantage of defection cannot be maintained if the protocol is based on the success of leaders.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Xiaojie Chen
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
7
|
Ding H, Cao L, Ren Y, Choo KKR, Shi B. Reputation-Based Investment Helps to Optimize Group Behaviors in Spatial Lattice Networks. PLoS One 2016; 11:e0162781. [PMID: 27611686 PMCID: PMC5017752 DOI: 10.1371/journal.pone.0162781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/29/2016] [Indexed: 12/03/2022] Open
Abstract
Encouraging cooperation among selfish individuals is crucial in many real-world systems, where individuals’ collective behaviors can be analyzed using evolutionary public goods game. Along this line, extensive studies have shown that reputation is an effective mechanism to investigate the evolution of cooperation. In most existing studies, participating individuals in a public goods game are assumed to contribute unconditionally into the public pool, or they can choose partners based on a common reputation standard (e.g., preferences or characters). However, to assign one reputation standard for all individuals is impractical in many real-world deployment. In this paper, we introduce a reputation tolerance mechanism that allows an individual to select its potential partners and decide whether or not to contribute an investment to the public pool based on its tolerance to other individuals’ reputation. Specifically, an individual takes part in a public goods game only if the number of participants with higher reputation exceeds the value of its tolerance. Moreover, in this paper, an individual’s reputation can increase or decrease in a bounded interval based on its historical behaviors. We explore the principle that how the reputation tolerance and conditional investment mechanisms can affect the evolution of cooperation in spatial lattice networks. Our simulation results demonstrate that a larger tolerance value can achieve an environment that promote the cooperation of participants.
Collapse
Affiliation(s)
- Hong Ding
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China.,Key Laboratory of Complex Systems Modeling and Simulation, Ministry of Education,China, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lin Cao
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yizhi Ren
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China.,Key Laboratory of Complex Systems Modeling and Simulation, Ministry of Education,China, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Kim-Kwang Raymond Choo
- Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX 78249-0631, United States of America.,School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, 5059, Australia
| | - Benyun Shi
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China.,Key Laboratory of Complex Systems Modeling and Simulation, Ministry of Education,China, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|
8
|
Evolutionary stability in continuous nonlinear public goods games. J Math Biol 2016; 74:499-529. [DOI: 10.1007/s00285-016-1017-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 02/07/2016] [Indexed: 11/25/2022]
|
9
|
Promote or hinder? The role of punishment in the emergence of cooperation. J Theor Biol 2015; 386:69-77. [PMID: 26408337 DOI: 10.1016/j.jtbi.2015.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/09/2015] [Accepted: 09/12/2015] [Indexed: 11/24/2022]
Abstract
Investigation of anti-social punishment has shaken the positive role of punishment in the evolution of cooperation. However, punishment is ubiquitous in nature, and the centralized, apposed to decentralized, punishment is more favored by certain modern societies in particular. To explore the underlying principle of such phenomenon, we study the evolution of cooperation in the context of pro- and anti-social punishments subject to two distinct patterns: costly centralized and decentralized punishments. The results suggest that the pattern of punishment has a great effect on the role of punishment in the evolution of cooperation. In the absence of anti-social punishment, the costly centralized punishment is more effective in promoting the emergence of cooperation. Anti-social punishment can subvert the positive role of punishment when anti- and pro-social punishments are in the same pattern. However, driven by centralized pro-social punishment, cooperation can be more advantageous than defection even in the presence of decentralized anti-social punishment.
Collapse
|
10
|
Universal scaling for the dilemma strength in evolutionary games. Phys Life Rev 2015; 14:1-30. [PMID: 25979121 DOI: 10.1016/j.plrev.2015.04.033] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 11/24/2022]
Abstract
Why would natural selection favor the prevalence of cooperation within the groups of selfish individuals? A fruitful framework to address this question is evolutionary game theory, the essence of which is captured in the so-called social dilemmas. Such dilemmas have sparked the development of a variety of mathematical approaches to assess the conditions under which cooperation evolves. Furthermore, borrowing from statistical physics and network science, the research of the evolutionary game dynamics has been enriched with phenomena such as pattern formation, equilibrium selection, and self-organization. Numerous advances in understanding the evolution of cooperative behavior over the last few decades have recently been distilled into five reciprocity mechanisms: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity. However, when social viscosity is introduced into a population via any of the reciprocity mechanisms, the existing scaling parameters for the dilemma strength do not yield a unique answer as to how the evolutionary dynamics should unfold. Motivated by this problem, we review the developments that led to the present state of affairs, highlight the accompanying pitfalls, and propose new universal scaling parameters for the dilemma strength. We prove universality by showing that the conditions for an ESS and the expressions for the internal equilibriums in an infinite, well-mixed population subjected to any of the five reciprocity mechanisms depend only on the new scaling parameters. A similar result is shown to hold for the fixation probability of the different strategies in a finite, well-mixed population. Furthermore, by means of numerical simulations, the same scaling parameters are shown to be effective even if the evolution of cooperation is considered on the spatial networks (with the exception of highly heterogeneous setups). We close the discussion by suggesting promising directions for future research including (i) how to handle the dilemma strength in the context of co-evolution and (ii) where to seek opportunities for applying the game theoretical approach with meaningful impact.
Collapse
|
11
|
Szolnoki A, Perc M. Conformity enhances network reciprocity in evolutionary social dilemmas. J R Soc Interface 2015; 12:20141299. [PMID: 25540242 PMCID: PMC4305429 DOI: 10.1098/rsif.2014.1299] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 12/04/2014] [Indexed: 11/12/2022] Open
Abstract
The pursuit of highest payoffs in evolutionary social dilemmas is risky and sometimes inferior to conformity. Choosing the most common strategy within the interaction range is safer because it ensures that the payoff of an individual will not be much lower than average. Herding instincts and crowd behaviour in humans and social animals also compel to conformity in their own right. Motivated by these facts, we here study the impact of conformity on the evolution of cooperation in social dilemmas. We show that an appropriate fraction of conformists within the population introduces an effective surface tension around cooperative clusters and ensures smooth interfaces between different strategy domains. Payoff-driven players brake the symmetry in favour of cooperation and enable an expansion of clusters past the boundaries imposed by traditional network reciprocity. This mechanism works even under the most testing conditions, and it is robust against variations of the interaction network as long as degree-normalized payoffs are applied. Conformity may thus be beneficial for the resolution of social dilemmas.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 49, 1525 Budapest, Hungary
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia CAMTP-Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, 2000 Maribor, Slovenia
| |
Collapse
|
12
|
Li Y. The evolution of reputation-based partner-switching behaviors with a cost. Sci Rep 2014; 4:5957. [PMID: 25091006 PMCID: PMC4121600 DOI: 10.1038/srep05957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/16/2014] [Indexed: 11/09/2022] Open
Abstract
Humans constantly adjust their social relationships and choose new partners of good reputations, thereby promoting the evolution of cooperation. Individuals have to pay a cost to build a reputation, obtain others' information and then make partnership adjustments, yet the conditions under which such costly behaviors are able to evolve remain to be explored. In this model, I assume that individuals have to pay a cost to adjust their partnerships. Furthermore, whether an individual can adjust his partnership based on reputation is determined by his strategic preference, which is updated via coevolution. Using the metaphor of a public goods game where the collective benefit is shared among all members of a group, the coupling dynamics of cooperation and partnership adjustment were numerically simulated. Partner-switching behavior cannot evolve in a public goods game with a low amplification factor. However, such an effect can be exempted by raising the productivity of public goods or the frequency of partnership adjustment. Moreover, costly partner-switching behavior is remarkably promoted by the condition that the mechanism of reputation evaluation considers its prosociality. A mechanism of reputation evaluation that praises both cooperative and partner-switching behaviors allows them to coevolve.
Collapse
Affiliation(s)
- Yixiao Li
- School of Information, Zhejiang University of Finance and Economics, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
13
|
Wu T, Fu F, Zhang Y, Wang L. Adaptive role switching promotes fairness in networked ultimatum game. Sci Rep 2013; 3:1550. [PMID: 23528986 PMCID: PMC3607882 DOI: 10.1038/srep01550] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 03/04/2013] [Indexed: 11/09/2022] Open
Abstract
In recent years, mechanisms favoring fair split in the ultimatum game have attracted growing interests because of its practical implications for international bargains. In this game, two players are randomly assigned two different roles respectively to split an offer: the proposer suggests how to split and the responder decides whether or not to accept it. Only when both agree is the offer successfully split; otherwise both get nothing. It is of importance and interest to break the symmetry in role assignment especially when the game is repeatedly played in a heterogeneous population. Here we consider an adaptive role assignment: whenever the split fails, the two players switch their roles probabilistically. The results show that this simple feedback mechanism proves much more effective at promoting fairness than other alternatives (where, for example, the role assignment is based on the number of neighbors).
Collapse
Affiliation(s)
- Te Wu
- Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
14
|
Szolnoki A, Perc M. Effectiveness of conditional punishment for the evolution of public cooperation. J Theor Biol 2013; 325:34-41. [DOI: 10.1016/j.jtbi.2013.02.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/14/2013] [Indexed: 11/24/2022]
|
15
|
Perc M, Gómez-Gardeñes J, Szolnoki A, Floría LM, Moreno Y. Evolutionary dynamics of group interactions on structured populations: a review. J R Soc Interface 2013; 10:20120997. [PMID: 23303223 PMCID: PMC3565747 DOI: 10.1098/rsif.2012.0997] [Citation(s) in RCA: 399] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/12/2012] [Indexed: 11/12/2022] Open
Abstract
Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory.
Collapse
Affiliation(s)
- Matjaz Perc
- University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia.
| | | | | | | | | |
Collapse
|
16
|
Wang Z, Szolnoki A, Perc M. Interdependent network reciprocity in evolutionary games. Sci Rep 2013; 3:1183. [PMID: 23378915 PMCID: PMC3560361 DOI: 10.1038/srep01183] [Citation(s) in RCA: 333] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/15/2013] [Indexed: 12/04/2022] Open
Abstract
Besides the structure of interactions within networks, also the interactions between networks are of the outmost importance. We therefore study the outcome of the public goods game on two interdependent networks that are connected by means of a utility function, which determines how payoffs on both networks jointly influence the success of players in each individual network. We show that an unbiased coupling allows the spontaneous emergence of interdependent network reciprocity, which is capable to maintain healthy levels of public cooperation even in extremely adverse conditions. The mechanism, however, requires simultaneous formation of correlated cooperator clusters on both networks. If this does not emerge or if the coordination process is disturbed, network reciprocity fails, resulting in the total collapse of cooperation. Network interdependence can thus be exploited effectively to promote cooperation past the limits imposed by isolated networks, but only if the coordination between the interdependent networks is not disturbed.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Physics Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Center for Nonlinear Studies and the Beijing-Hong Kong-Singapore Joint Center for Nonlinear and Complex Systems, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Attila Szolnoki
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of SciencesP.O. Box 49, H-1525 Budapest, Hungary
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
| |
Collapse
|
17
|
Santos MD, Pinheiro FL, Santos FC, Pacheco JM. Dynamics of N-person snowdrift games in structured populations. J Theor Biol 2012; 315:81-6. [DOI: 10.1016/j.jtbi.2012.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 11/25/2022]
|
18
|
Chen X, Szolnoki A, Perc M. Risk-driven migration and the collective-risk social dilemma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:036101. [PMID: 23030974 DOI: 10.1103/physreve.86.036101] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Indexed: 06/01/2023]
Abstract
A collective-risk social dilemma implies that personal endowments will be lost if contributions to the common pool within a group are too small. Failure to reach the collective target thus has dire consequences for all group members, independently of their strategies. Wanting to move away from unfavorable locations is therefore anything but surprising. Inspired by these observations, we here propose and study a collective-risk social dilemma where players are allowed to move if the collective failure becomes too probable. More precisely, this so-called risk-driven migration is launched depending on the difference between the actual contributions and the declared target. Mobility therefore becomes an inherent property that is utilized in an entirely self-organizing manner. We show that under these assumptions cooperation is promoted much more effectively than under the action of manually determined migration rates. For the latter, we in fact identify parameter regions where the evolution of cooperation is greatly inhibited. Moreover, we find unexpected spatial patterns where cooperators that do not form compact clusters outperform those that do, and where defectors are able to utilize strikingly different ways of invasion. The presented results support the recently revealed importance of percolation for the successful evolution of public cooperation, while at the same time revealing surprisingly simple methods of self-organization towards socially desirable states.
Collapse
Affiliation(s)
- Xiaojie Chen
- Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria.
| | | | | |
Collapse
|
19
|
Szolnoki A, Wang Z, Perc M. Wisdom of groups promotes cooperation in evolutionary social dilemmas. Sci Rep 2012; 2:576. [PMID: 22893854 PMCID: PMC3418638 DOI: 10.1038/srep00576] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 07/30/2012] [Indexed: 11/20/2022] Open
Abstract
Whether or not to change strategy depends not only on the personal success of each individual, but also on the success of others. Using this as motivation, we study the evolution of cooperation in games that describe social dilemmas, where the propensity to adopt a different strategy depends both on individual fitness as well as on the strategies of neighbors. Regardless of whether the evolutionary process is governed by pairwise or group interactions, we show that plugging into the “wisdom of groups” strongly promotes cooperative behavior. The more the wider knowledge is taken into account the more the evolution of defectors is impaired. We explain this by revealing a dynamically decelerated invasion process, by means of which interfaces separating different domains remain smooth and defectors therefore become unable to efficiently invade cooperators. This in turn invigorates spatial reciprocity and establishes decentralized decision making as very beneficial for resolving social dilemmas.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary.
| | | | | |
Collapse
|
20
|
Chen X, Szolnoki A, Perc M, Wang L. Impact of generalized benefit functions on the evolution of cooperation in spatial public goods games with continuous strategies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:066133. [PMID: 23005188 DOI: 10.1103/physreve.85.066133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Indexed: 06/01/2023]
Abstract
Cooperation and defection may be considered to be two extreme responses to a social dilemma. Yet the reality is much less clear-cut. Between the two extremes lies an interval of ambivalent choices, which may be captured theoretically by means of continuous strategies defining the extent of the contributions of each individual player to the common pool. If strategies are chosen from the unit interval, where 0 corresponds to pure defection and 1 corresponds to the maximal contribution, the question is what is the characteristic level of individual investments to the common pool that emerges if the evolution is guided by different benefit functions. Here we consider the steepness and the threshold as two parameters defining an array of generalized benefit functions, and we show that in a structured population there exist intermediate values of both at which the collective contributions are maximal. However, as the cost-to-benefit ratio of cooperation increases, the characteristic threshold decreases while the corresponding steepness increases. Our observations remain valid if more complex sigmoid functions are used, thus reenforcing the importance of carefully adjusted benefits for high levels of public cooperation.
Collapse
Affiliation(s)
- Xiaojie Chen
- Evolution and Ecology Program, International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria.
| | | | | | | |
Collapse
|
21
|
Adaptive and bounded investment returns promote cooperation in spatial public goods games. PLoS One 2012; 7:e36895. [PMID: 22615836 PMCID: PMC3353963 DOI: 10.1371/journal.pone.0036895] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/09/2012] [Indexed: 11/26/2022] Open
Abstract
The public goods game is one of the most famous models for studying the evolution of cooperation in sizable groups. The multiplication factor in this game can characterize the investment return from the public good, which may be variable depending on the interactive environment in realistic situations. Instead of using the same universal value, here we consider that the multiplication factor in each group is updated based on the differences between the local and global interactive environments in the spatial public goods game, but meanwhile limited to within a certain range. We find that the adaptive and bounded investment returns can significantly promote cooperation. In particular, full cooperation can be achieved for high feedback strength when appropriate limitation is set for the investment return. Also, we show that the fraction of cooperators in the whole population can become larger if the lower and upper limits of the multiplication factor are increased. Furthermore, in comparison to the traditionally spatial public goods game where the multiplication factor in each group is identical and fixed, we find that cooperation can be better promoted if the multiplication factor is constrained to adjust between one and the group size in our model. Our results highlight the importance of the locally adaptive and bounded investment returns for the emergence and dominance of cooperative behavior in structured populations.
Collapse
|
22
|
Szolnoki A, Perc M. Conditional strategies and the evolution of cooperation in spatial public goods games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:026104. [PMID: 22463276 DOI: 10.1103/physreve.85.026104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/12/2012] [Indexed: 05/31/2023]
Abstract
The fact that individuals will most likely behave differently in different situations begets the introduction of conditional strategies. Inspired by this, we study the evolution of cooperation in the spatial public goods game, where, besides unconditional cooperators and defectors, also different types of conditional cooperators compete for space. Conditional cooperators will contribute to the public good only if other players within the group are likely to cooperate as well but will withhold their contribution otherwise. Depending on the number of other cooperators that are required to elicit cooperation of a conditional cooperator, the latter can be classified in as many types as there are players within each group. We find that the most cautious cooperators, who require all other players within a group to be conditional cooperators, are the undisputed victors of the evolutionary process, even at very low synergy factors. We show that the remarkable promotion of cooperation is due primarily to the spontaneous emergence of quarantining of defectors, who become surrounded by conditional cooperators and are forced into isolated convex "bubbles" from which they are unable to exploit the public good. This phenomenon can be observed only in structured populations, thus adding to the relevance of pattern formation for the successful evolution of cooperation.
Collapse
Affiliation(s)
- Attila Szolnoki
- Research Institute for Technical Physics and Materials Science, PO Box 49, H-1525 Budapest, Hungary
| | | |
Collapse
|
23
|
Zhang Y, Fu F, Wu T, Xie G, Wang L. Inertia in strategy switching transforms the strategy evolution. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:066103. [PMID: 22304151 DOI: 10.1103/physreve.84.066103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/11/2011] [Indexed: 05/31/2023]
Abstract
A recent experimental study [Traulsen et al., Proc. Natl. Acad. Sci. 107, 2962 (2010)] shows that human strategy updating involves both direct payoff comparison and the cost of switching strategy, which is equivalent to inertia. However, it remains largely unclear how such a predisposed inertia affects 2 × 2 games in a well-mixed population of finite size. To address this issue, the "inertia bonus" (strategy switching cost) is added to the learner payoff in the Fermi process. We find how inertia quantitatively shapes the stationary distribution and that stochastic stability under inertia exhibits three regimes, with each covering seven regions in the plane spanned by two inertia parameters. We also obtain the extended "1/3" rule with inertia and the speed criterion with inertia; these two findings hold for a population above two. We illustrate the above results in the framework of the Prisoner's Dilemma game. As inertia varies, two intriguing stationary distributions emerge: the probability of coexistence state is maximized, or those of two full states are simultaneously peaked. Our results may provide useful insights into how the inertia of changing status quo acts on the strategy evolution and, in particular, the evolution of cooperation.
Collapse
Affiliation(s)
- Yanling Zhang
- Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | |
Collapse
|
24
|
Szolnoki A, Perc M. Group-size effects on the evolution of cooperation in the spatial public goods game. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:047102. [PMID: 22181317 DOI: 10.1103/physreve.84.047102] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Indexed: 05/31/2023]
Abstract
We study the evolution of cooperation in public goods games on the square lattice, focusing on the effects that are brought about by different sizes of groups where individuals collect their payoffs and search for potential strategy donors. We find that increasing the group size does not necessarily lead to mean-field behavior, as is traditionally observed for games governed by pairwise interactions, but rather that public cooperation may be additionally promoted by means of enhanced spatial reciprocity that sets in for very large groups. Our results highlight that the promotion of cooperation due to spatial interactions is not rooted solely in having restricted connections among players, but also in individuals having the opportunity to collect payoffs separately from their direct opponents. Moreover, in large groups the presence of a small number of defectors is bearable, which makes the mixed-phase region expand with increasing group size. Having a chance of exploiting distant players, however, offers defectors a different way to break the phalanx of cooperators and even to resurrect from small numbers to eventually completely invade the population.
Collapse
Affiliation(s)
- Attila Szolnoki
- Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest, Hungary
| | | |
Collapse
|
25
|
Perc M. Success-driven distribution of public goods promotes cooperation but preserves defection. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:037102. [PMID: 22060534 DOI: 10.1103/physreve.84.037102] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/14/2011] [Indexed: 05/31/2023]
Abstract
Established already in Biblical times, the Matthew effect refers to the fact that in societies the rich tend to get richer and the potent even more powerful. Here we investigate a game theoretical model describing the evolution of cooperation on structured populations where the distribution of public goods is driven by the reproductive success of individuals. Phase diagrams reveal that cooperation is promoted irrespective of the uncertainty by strategy adoptions and the type of interaction graph, yet the complete dominance of cooperators is elusive due to the spontaneous emergence of superpersistent defectors that owe their survival to extremely rare microscopic patterns. This indicates that success-driven mechanisms are crucial for effectively harvesting benefits from collective actions but that they may also account for the observed persistence of maladaptive behavior.
Collapse
Affiliation(s)
- Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
| |
Collapse
|
26
|
Smaldino PE, Lubell M. An institutional mechanism for assortment in an ecology of games. PLoS One 2011; 6:e23019. [PMID: 21850249 PMCID: PMC3151282 DOI: 10.1371/journal.pone.0023019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/08/2011] [Indexed: 11/18/2022] Open
Abstract
Recent research has revived Long's "ecology of games" model to analyze how social actors cooperate in the context of multiple political and social games. However, there is still a paucity of theoretical work that considers the mechanisms by which large-scale cooperation can be promoted in a dynamic institutional landscape, in which actors can join new games and leave old ones. This paper develops an agent-based model of an ecology of games where agents participate in multiple public goods games. In addition to contribution decisions, the agents can leave and join different games, and these processes are de-coupled. We show that the payoff for cooperation is greater than for defection when limits to the number of actors per game ("capacity constraints") structure the population in ways that allow cooperators to cluster, independent of any complex individual-level mechanisms such as reputation or punishment. Our model suggests that capacity constraints are one effective mechanism for producing positive assortment and increasing cooperation in an ecology of games. The results suggest an important trade-off between the inclusiveness of policy processes and cooperation: Fully inclusive policy processes reduce the chances of cooperation.
Collapse
Affiliation(s)
- Paul E Smaldino
- Department of Psychology, University of California Davis, Davis, California, United States of America.
| | | |
Collapse
|
27
|
Rong Z, Yang HX, Wang WX. Feedback reciprocity mechanism promotes the cooperation of highly clustered scale-free networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:047101. [PMID: 21230418 DOI: 10.1103/physreve.82.047101] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 05/27/2010] [Indexed: 05/30/2023]
Abstract
We study how the clustering coefficient influences the evolution of cooperation in scale-free public goods games. In games played by groups of individuals, triangle loops provide stronger support for mutual cooperation to resist invasion of selfish behavior than that in the absence of such loops, so that diffusion of cooperative behavior is relatively promoted. The feedback reciprocity mechanism of triangle plays a key role in facilitating cooperation in high clustered networks.
Collapse
Affiliation(s)
- Zhihai Rong
- Department of Automation, Donghua University, 201620 Shanghai, China.
| | | | | |
Collapse
|
28
|
Helbing D, Szolnoki A, Perc M, Szabó G. Defector-accelerated cooperativeness and punishment in public goods games with mutations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:057104. [PMID: 20866359 DOI: 10.1103/physreve.81.057104] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 04/27/2010] [Indexed: 05/29/2023]
Abstract
We study the evolution of cooperation in spatial public goods games with four competing strategies: cooperators, defectors, punishing cooperators, and punishing defectors. To explore the robustness of the cooperation-promoting effect of costly punishment, besides the usual strategy adoption dynamics we also apply strategy mutations. As expected, frequent mutations create kind of well-mixed conditions, which support the spreading of defectors. However, when the mutation rate is small, the final stationary state does not significantly differ from the state of the mutation-free model, independently of the values of the punishment fine and cost. Nevertheless, the mutation rate affects the relaxation dynamics. Rare mutations can largely accelerate the spreading of costly punishment. This is due to the fact that the presence of defectors breaks the balance of power between both cooperative strategies, which leads to a different kind of dynamics.
Collapse
Affiliation(s)
- Dirk Helbing
- ETH Zurich, CLU E1, Clausiusstr. 50, 8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
29
|
Szolnoki A, Perc M. Impact of critical mass on the evolution of cooperation in spatial public goods games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:057101. [PMID: 20866356 DOI: 10.1103/physreve.81.057101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Indexed: 05/16/2023]
Abstract
We study the evolution of cooperation under the assumption that the collective benefits of group membership can only be harvested if the fraction of cooperators within the group, i.e., their critical mass, exceeds a threshold value. Considering structured populations, we show that a moderate fraction of cooperators can prevail even at very low multiplication factors if the critical mass is minimal. For larger multiplication factors, however, the level of cooperation is highest at an intermediate value of the critical mass. The latter is robust to variations of the group size and the interaction network topology. Applying the optimal critical mass threshold, we show that the fraction of cooperators in public goods games is significantly larger than in the traditional linear model, where the produced public good is proportional to the fraction of cooperators within the group.
Collapse
Affiliation(s)
- Attila Szolnoki
- Research Institute for Technical Physics and Materials Science, PO Box 49, H-1525 Budapest, Hungary
| | | |
Collapse
|