1
|
Gao L, Peng J, Tang C, Xu Q. Controlling and optimizing the transport (search) efficiency with local information on a class of scale-free trees. CHAOS (WOODBURY, N.Y.) 2024; 34:103136. [PMID: 39432724 DOI: 10.1063/5.0223595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024]
Abstract
The scale-free trees are fundamental dynamics networks with extensive applications in material and engineering fields owing to their high reliability and low power consumption characteristics. Controlling and optimizing transport (search) efficiency on scale-free trees has attracted much attention. In this paper, we first introduce degree-dependent weighted tree by assigning each edge (x,y) a weight wxy=(dxdy)θ, with dx and dy being the degree of nodes x and y, and θ being a controllable parameter. Then, we design a parameterized biased random walk strategy with the transition probability depending on the local information (the degree of neighboring nodes) and a parameter θ. Finally, we evaluate analytically the global mean first-passage time, which is an important indicator for measuring the transport (search) efficiency on the underlying networks, and find the interval for parameter θ where transport (search) efficiency can be improved on a class of scale-free trees. We also analyze the (transfinite) walk dimension for our biased random walk on the scale-free trees and find one can obtain arbitrary transfinite walk dimension in an interval by properly tuning the biased parameter θ. The results obtained here would shed light on controlling and optimizing transport (search) efficiency on objects with scale-free tree structures.
Collapse
Affiliation(s)
- Long Gao
- School of Mathematical and Information Science, Guangzhou University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory co-sponsored by province and city of Information Security Technology, Guangzhou University, Guangzhou 510006, China
- Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China
| | - Junhao Peng
- School of Mathematical and Information Science, Guangzhou University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory co-sponsored by province and city of Information Security Technology, Guangzhou University, Guangzhou 510006, China
- Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China
| | - Chunming Tang
- School of Mathematical and Information Science, Guangzhou University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory co-sponsored by province and city of Information Security Technology, Guangzhou University, Guangzhou 510006, China
- Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou 510006, China
| | - Qiuxia Xu
- School of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou 510665, China
| |
Collapse
|
2
|
Peng J, Agliari E. Exact results for the first-passage properties in a class of fractal networks. CHAOS (WOODBURY, N.Y.) 2019; 29:023105. [PMID: 30823739 DOI: 10.1063/1.5080481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
In this work, we consider a class of recursively grown fractal networks Gn(t) whose topology is controlled by two integer parameters, t and n. We first analyse the structural properties of Gn(t) (including fractal dimension, modularity, and clustering coefficient), and then we move to its transport properties. The latter are studied in terms of first-passage quantities (including the mean trapping time, the global mean first-passage time, and Kemeny's constant), and we highlight that their asymptotic behavior is controlled by the network's size and diameter. Remarkably, if we tune n (or, analogously, t) while keeping the network size fixed, as n increases (t decreases) the network gets more and more clustered and modular while its diameter is reduced, implying, ultimately, a better transport performance. The connection between this class of networks and models for polymer architectures is also discussed.
Collapse
Affiliation(s)
- Junhao Peng
- School of Math and Information Science, Guangzhou University, Guangzhou 510006, China
| | - Elena Agliari
- Department of Mathematics, Sapienza Università di Roma, 00185 Rome, Italy
| |
Collapse
|
3
|
Ma F, Yao B. The number of spanning trees of a class of self-similar fractal models. INFORM PROCESS LETT 2018. [DOI: 10.1016/j.ipl.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Peng J, Agliari E. Scaling laws for diffusion on (trans)fractal scale-free networks. CHAOS (WOODBURY, N.Y.) 2017; 27:083108. [PMID: 28863489 DOI: 10.1063/1.4997761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fractal (or transfractal) features are common in real-life networks and are known to influence the dynamic processes taking place in the network itself. Here, we consider a class of scale-free deterministic networks, called (u, v)-flowers, whose topological properties can be controlled by tuning the parameters u and v; in particular, for u > 1, they are fractals endowed with a fractal dimension df, while for u = 1, they are transfractal endowed with a transfractal dimension d̃f. In this work, we investigate dynamic processes (i.e., random walks) and topological properties (i.e., the Laplacian spectrum) and we show that, under proper conditions, the same scalings (ruled by the related dimensions) emerge for both fractal and transfractal dimensions.
Collapse
Affiliation(s)
- Junhao Peng
- School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China
| | - Elena Agliari
- Department of Mathematics, Sapienza Università di Roma, 00198 Rome, Italy
| |
Collapse
|
5
|
Agliari E, Tavani F. The exact Laplacian spectrum for the Dyson hierarchical network. Sci Rep 2017; 7:39962. [PMID: 28067261 PMCID: PMC5220329 DOI: 10.1038/srep39962] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/30/2016] [Indexed: 11/27/2022] Open
Abstract
We consider the Dyson hierarchical graph , that is a weighted fully-connected graph, where the pattern of weights is ruled by the parameter σ ∈ (1/2, 1]. Exploiting the deterministic recursivity through which is built, we are able to derive explicitly the whole set of the eigenvalues and the eigenvectors for its Laplacian matrix. Given that the Laplacian operator is intrinsically implied in the analysis of dynamic processes (e.g., random walks) occurring on the graph, as well as in the investigation of the dynamical properties of connected structures themselves (e.g., vibrational structures and relaxation modes), this result allows addressing analytically a large class of problems. In particular, as examples of applications, we study the random walk and the continuous-time quantum walk embedded in , the relaxation times of a polymer whose structure is described by , and the community structure of in terms of modularity measures.
Collapse
Affiliation(s)
- Elena Agliari
- Dipartimento di Matematica, Sapienza Università di Roma, P. le A. Moro 5, 00185, Roma, Italy
| | - Flavia Tavani
- Dipartimento SBAI (Ingegneria), Sapienza Università di Roma, via A. Scarpa 16, 00161, Roma, Italy
| |
Collapse
|
6
|
Zhang Z, Li H, Yi Y. Anomalous behavior of trapping in extended dendrimers with a perfect trap. J Chem Phys 2015; 143:064901. [PMID: 26277160 DOI: 10.1063/1.4927473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Compact and extended dendrimers are two important classes of dendritic polymers. The impact of the underlying structure of compact dendrimers on dynamical processes has been much studied, yet the relation between the dynamical and structural properties of extended dendrimers remains not well understood. In this paper, we study the trapping problem in extended dendrimers with generation-dependent segment lengths, which is different from that of compact dendrimers where the length of the linear segments is fixed. We first consider a particular case that the deep trap is located at the central node, and derive an exact formula for the average trapping time (ATT) defined as the average of the source-to-trap mean first passage time over all starting points. Then, using the obtained result we deduce a closed-form expression for the ATT to an arbitrary trap node, based on which we further obtain an explicit solution to the ATT corresponding to the trapping issue with the trap uniformly distributed in the polymer systems. We show that the trap location has a substantial influence on the trapping efficiency measured by the ATT, which increases with the shortest distance from the trap to the central node, a phenomenon similar to that for compact dendrimers. In contrast to this resemblance, the leading terms of ATTs for the three trapping problems differ drastically between extended and compact dendrimers, with the trapping processes in the extended dendrimers being less efficient than in compact dendrimers.
Collapse
Affiliation(s)
- Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China
| | - Huan Li
- School of Computer Science, Fudan University, Shanghai 200433, China
| | - Yuhao Yi
- School of Computer Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Zhang Z, Dong Y, Sheng Y. Mixed random walks with a trap in scale-free networks including nearest-neighbor and next-nearest-neighbor jumps. J Chem Phys 2015; 143:134101. [PMID: 26450286 DOI: 10.1063/1.4931988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Random walks including non-nearest-neighbor jumps appear in many real situations such as the diffusion of adatoms and have found numerous applications including PageRank search algorithm; however, related theoretical results are much less for this dynamical process. In this paper, we present a study of mixed random walks in a family of fractal scale-free networks, where both nearest-neighbor and next-nearest-neighbor jumps are included. We focus on trapping problem in the network family, which is a particular case of random walks with a perfect trap fixed at the central high-degree node. We derive analytical expressions for the average trapping time (ATT), a quantitative indicator measuring the efficiency of the trapping process, by using two different methods, the results of which are consistent with each other. Furthermore, we analytically determine all the eigenvalues and their multiplicities for the fundamental matrix characterizing the dynamical process. Our results show that although next-nearest-neighbor jumps have no effect on the leading scaling of the trapping efficiency, they can strongly affect the prefactor of ATT, providing insight into better understanding of random-walk process in complex systems.
Collapse
Affiliation(s)
- Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China
| | - Yuze Dong
- School of Computer Science, Fudan University, Shanghai 200433, China
| | - Yibin Sheng
- School of Computer Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Peng J, Agliari E, Zhang Z. Exact calculations of first-passage properties on the pseudofractal scale-free web. CHAOS (WOODBURY, N.Y.) 2015; 25:073118. [PMID: 26232969 DOI: 10.1063/1.4927085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, we consider discrete time random walks on the pseudofractal scale-free web (PSFW) and we study analytically the related first passage properties. First, we classify the nodes of the PSFW into different levels and propose a method to derive the generation function of the first passage probability from an arbitrary starting node to the absorbing domain, which is located at one or more nodes of low-level (i.e., nodes with large degree). Then, we calculate exactly the first passage probability, the survival probability, the mean, and the variance of first passage time by using the generating functions as a tool. Finally, for some illustrative examples corresponding to given choices of starting node and absorbing domain, we derive exact and explicit results for such first passage properties. The method we propose can as well address the cases where the absorbing domain is located at one or more nodes of high-level on the PSFW, and it can also be used to calculate the first passage properties on other networks with self-similar structure, such as (u, v) flowers and recursive scale-free trees.
Collapse
Affiliation(s)
- Junhao Peng
- School of Math and Information Science, Guangzhou University, Guangzhou 510006, China
| | - Elena Agliari
- Department of Mathematics, Sapienza University, Rome 00185, Italy
| | - Zhongzhi Zhang
- Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Di Patti F, Fanelli D, Piazza F. Optimal search strategies on complex multi-linked networks. Sci Rep 2015; 5:9869. [PMID: 25950716 PMCID: PMC4423499 DOI: 10.1038/srep09869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/10/2015] [Indexed: 11/15/2022] Open
Abstract
In this paper we consider the problem of optimal search strategies on multi-linked networks, i.e. graphs whose nodes are endowed with several independent sets of links. We focus preliminarily on agents randomly hopping along the links of a graph, with the additional possibility of performing non-local hops to randomly chosen nodes with a given probability. We show that an optimal combination of the two jump rules exists that maximises the efficiency of target search, the optimum reflecting the topology of the network. We then generalize our results to multi-linked networks with an arbitrary number of mutually interfering link sets.
Collapse
Affiliation(s)
- Francesca Di Patti
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia and CSDC, via G. Sansone 1, 50019 Sesto Fiorentino, Firenze, Italia
- INFN, Sezione di Firenze, Italia
| | - Duccio Fanelli
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia and CSDC, via G. Sansone 1, 50019 Sesto Fiorentino, Firenze, Italia
- INFN, Sezione di Firenze, Italia
| | - Francesco Piazza
- Université d'Orléans, Centre de Biophysique Moléculaire, CNRS-UPR4301, Rue C. Sadron, 45071, Orléans, France
| |
Collapse
|
10
|
Zhang Z, Li H, Sheng Y. Effects of reciprocity on random walks in weighted networks. Sci Rep 2014; 4:7460. [PMID: 25500907 PMCID: PMC5376983 DOI: 10.1038/srep07460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 11/24/2014] [Indexed: 12/05/2022] Open
Abstract
It has been recently reported that the reciprocity of real-life weighted networks is very pronounced, however its impact on dynamical processes is poorly understood. In this paper, we study random walks in a scale-free directed weighted network with a trap at the central hub node, where the weight of each directed edge is dominated by a parameter controlling the extent of network reciprocity. We derive two expressions for the mean first passage time (MFPT) to the trap, by using two different techniques, the results of which agree well with each other. We also analytically determine all the eigenvalues as well as their multiplicities for the fundamental matrix of the dynamical process, and show that the largest eigenvalue has an identical dominant scaling as that of the MFPT.We find that the weight parameter has a substantial effect on the MFPT, which behaves as a power-law function of the system size with the power exponent dependent on the parameter, signaling the crucial role of reciprocity in random walks occurring in weighted networks.
Collapse
Affiliation(s)
- Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China
- Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| | - Huan Li
- School of Computer Science, Fudan University, Shanghai 200433, China
- Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| | - Yibin Sheng
- School of Computer Science, Fudan University, Shanghai 200433, China
- Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
Peng X, Zhang Z. Maximal entropy random walk improves efficiency of trapping in dendrimers. J Chem Phys 2014; 140:234104. [DOI: 10.1063/1.4883335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Lin Y, Zhang Z. Mean first-passage time for maximal-entropy random walks in complex networks. Sci Rep 2014; 4:5365. [PMID: 24947015 PMCID: PMC4064359 DOI: 10.1038/srep05365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/27/2014] [Indexed: 11/09/2022] Open
Abstract
We perform an in-depth study for mean first-passage time (MFPT)--a primary quantity for random walks with numerous applications--of maximal-entropy random walks (MERW) performed in complex networks. For MERW in a general network, we derive an explicit expression of MFPT in terms of the eigenvalues and eigenvectors of the adjacency matrix associated with the network. For MERW in uncorrelated networks, we also provide a theoretical formula of MFPT at the mean-field level, based on which we further evaluate the dominant scalings of MFPT to different targets for MERW in uncorrelated scale-free networks, and compare the results with those corresponding to traditional unbiased random walks (TURW). We show that the MFPT to a hub node is much lower for MERW than for TURW. However, when the destination is a node with the least degree or a uniformly chosen node, the MFPT is higher for MERW than for TURW. Since MFPT to a uniformly chosen node measures real efficiency of search in networks, our work provides insight into general searching process in complex networks.
Collapse
Affiliation(s)
- Yuan Lin
- School of Computer Science, Fudan University, Shanghai 200433, China
- Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| | - Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China
- Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Peng J, Xu G. Efficiency analysis of diffusion on T-fractals in the sense of random walks. J Chem Phys 2014; 140:134102. [DOI: 10.1063/1.4869799] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
Bonaventura M, Nicosia V, Latora V. Characteristic times of biased random walks on complex networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012803. [PMID: 24580277 DOI: 10.1103/physreve.89.012803] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Indexed: 06/03/2023]
Abstract
We consider degree-biased random walkers whose probability to move from a node to one of its neighbors of degree k is proportional to k(α), where α is a tuning parameter. We study both numerically and analytically three types of characteristic times, namely (i) the time the walker needs to come back to the starting node, (ii) the time it takes to visit a given node for the first time, and (iii) the time it takes to visit all the nodes of the network. We consider a large data set of real-world networks and we show that the value of α which minimizes the three characteristic times differs from the value α(min)=-1 analytically found for uncorrelated networks in the mean-field approximation. In addition to this, we found that assortative networks have preferentially a value of α(min) in the range [-1,-0.5], while disassortative networks have α(min) in the range [-0.5,0]. We derive an analytical relation between the degree correlation exponent ν and the optimal bias value α(min), which works well for real-world assortative networks. When only local information is available, degree-biased random walks can guarantee smaller characteristic times than the classical unbiased random walks by means of an appropriate tuning of the motion bias.
Collapse
Affiliation(s)
- Moreno Bonaventura
- School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom and School of Business and Management, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Vincenzo Nicosia
- School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Vito Latora
- School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom and Dipartimento di Fisica e Astronomia, Università di Catania and INFN, 95123 Catania, Italy
| |
Collapse
|
15
|
Yang Y, Zhang Z. Random walks in unweighted and weighted modular scale-free networks with a perfect trap. J Chem Phys 2013; 139:234106. [PMID: 24359351 DOI: 10.1063/1.4835655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Designing optimal structure favorable to diffusion and effectively controlling the trapping process are crucial in the study of trapping problem--random walks with a single trap. In this paper, we study the trapping problem occurring on unweighted and weighted networks, respectively. The networks under consideration display the striking scale-free, small-world, and modular properties, as observed in diverse real-world systems. For binary networks, we concentrate on three cases of trapping problems with the trap located at a peripheral node, a neighbor of the root with the least connectivity, and a farthest node, respectively. For weighted networks with edge weights controlled by a parameter, we also study three trapping problems, in which the trap is placed separately at the root, a neighbor of the root with the least degree, and a farthest node. For all the trapping problems, we obtain the analytical formulas for the average trapping time (ATT) measuring the efficiency of the trapping process, as well as the leading scaling of ATT. We show that for all the trapping problems in the binary networks with a trap located at different nodes, the dominating scalings of ATT reach the possible minimum scalings, implying that the networks have optimal structure that is advantageous to efficient trapping. Furthermore, we show that for trapping in the weighted networks, the ATT is controlled by the weight parameter, through modifying which, the ATT can behave superlinearly, linearly, sublinearly, or logarithmically with the system size. This work could help improving the design of systems with efficient trapping process and offers new insight into control of trapping in complex systems.
Collapse
Affiliation(s)
- Yihang Yang
- School of Computer Science, Fudan University, Shanghai 200433, China
| | - Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Dai M, Li X, Xi L. Random walks on non-homogenous weighted Koch networks. CHAOS (WOODBURY, N.Y.) 2013; 23:033106. [PMID: 24089942 DOI: 10.1063/1.4810927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this paper, we introduce new models of non-homogenous weighted Koch networks on real traffic systems depending on the three scaling factors r1,r2,r3∈(0,1). Inspired by the definition of the average weighted shortest path (AWSP), we define the average weighted receiving time (AWRT). Assuming that the walker, at each step, starting from its current node, moves uniformly to any of its neighbors, we show that in large network, the AWRT grows as power-law function of the network order with the exponent, represented by θ(r1,r2,r3)=log4(1+r1+r2+r3). Moreover, the AWSP, in the infinite network order limit, only depends on the sum of scaling factors r1,r2,r3.
Collapse
Affiliation(s)
- Meifeng Dai
- Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | | | | |
Collapse
|
17
|
Wu B, Zhang Z. Controlling the efficiency of trapping in treelike fractals. J Chem Phys 2013; 139:024106. [DOI: 10.1063/1.4812690] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Lin Y, Zhang Z. Random walks in weighted networks with a perfect trap: an application of Laplacian spectra. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062140. [PMID: 23848660 DOI: 10.1103/physreve.87.062140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Indexed: 06/02/2023]
Abstract
Trapping processes constitute a primary problem of random walks, which characterize various other dynamical processes taking place on networks. Most previous works focused on the case of binary networks, while there is much less related research about weighted networks. In this paper, we propose a general framework for the trapping problem on a weighted network with a perfect trap fixed at an arbitrary node. By utilizing the spectral graph theory, we provide an exact formula for mean first-passage time (MFPT) from one node to another, based on which we deduce an explicit expression for average trapping time (ATT) in terms of the eigenvalues and eigenvectors of the Laplacian matrix associated with the weighted graph, where ATT is the average of MFPTs to the trap over all source nodes. We then further derive a sharp lower bound for the ATT in terms of only the local information of the trap node, which can be obtained in some graphs. Moreover, we deduce the ATT when the trap is distributed uniformly in the whole network. Our results show that network weights play a significant role in the trapping process. To apply our framework, we use the obtained formulas to study random walks on two specific networks: trapping in weighted uncorrelated networks with a deep trap, the weights of which are characterized by a parameter, and Lévy random walks in a connected binary network with a trap distributed uniformly, which can be looked on as random walks on a weighted network. For weighted uncorrelated networks we show that the ATT to any target node depends on the weight parameter, that is, the ATT to any node can change drastically by modifying the parameter, a phenomenon that is in contrast to that for trapping in binary networks. For Lévy random walks in any connected network, by using their equivalence to random walks on a weighted complete network, we obtain the optimal exponent characterizing Lévy random walks, which have the minimal average of ATTs taken over all target nodes.
Collapse
Affiliation(s)
- Yuan Lin
- School of Computer Science, Fudan University, Shanghai 200433, China
| | | |
Collapse
|
19
|
Lin Y, Zhang Z. Influence of trap location on the efficiency of trapping in dendrimers and regular hyperbranched polymers. J Chem Phys 2013; 138:094905. [DOI: 10.1063/1.4793309] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Hwang S, Lee DS, Kahng B. Origin of the hub spectral dimension in scale-free networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022816. [PMID: 23496577 DOI: 10.1103/physreve.87.022816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Indexed: 06/01/2023]
Abstract
The return-to-origin probability and the first-passage-time distribution are essential quantities for understanding transport phenomena in diverse systems. The behaviors of these quantities typically depend on the spectral dimension d(s). However, it was recently revealed that in scale-free networks these quantities show a crossover between two power-law regimes characterized by d(s) and the so-called hub spectral dimension d(s)((hub)) due to the heterogeneity of connectivities of each node. To understand the origin of d(s)((hub)) from a theoretical perspective, we study a random walk problem on hierarchical scale-free networks by using the renormalization group (RG) approach. Under the RG transformation, not only the system size but also the degree of each node changes due to the scale-free nature of the degree distribution. We show that the anomalous behavior of random walks involving the hub spectral dimension d(s)((hub)) is induced by the conservation of the power-law degree distribution under the RG transformation.
Collapse
Affiliation(s)
- S Hwang
- Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea
| | | | | |
Collapse
|
21
|
Yang Y, Zhang Z. Optimal scale-free network with a minimum scaling of transport efficiency for random walks with a perfect trap. J Chem Phys 2013; 138:034101. [DOI: 10.1063/1.4774269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Zhang Z, Shan T, Chen G. Random walks on weighted networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012112. [PMID: 23410288 DOI: 10.1103/physreve.87.012112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Indexed: 06/01/2023]
Abstract
Random walks constitute a fundamental mechanism for a large set of dynamics taking place on networks. In this article, we study random walks on weighted networks with an arbitrary degree distribution, where the weight of an edge between two nodes has a tunable parameter. By using the spectral graph theory, we derive analytical expressions for the stationary distribution, mean first-passage time (MFPT), average trapping time (ATT), and lower bound of the ATT, which is defined as the average MFPT to a given node over every starting point chosen from the stationary distribution. All these results depend on the weight parameter, indicating a significant role of network weights on random walks. For the case of uncorrelated networks, we provide explicit formulas for the stationary distribution as well as ATT. Particularly, for uncorrelated scale-free networks, when the target is placed on a node with the highest degree, we show that ATT can display various scalings of network size, depending also on the same parameter. Our findings could pave a way to delicately controlling random-walk dynamics on complex networks.
Collapse
Affiliation(s)
- Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433,
| | | | | |
Collapse
|
23
|
Zhang Z, Sheng Y, Hu Z, Chen G. Optimal and suboptimal networks for efficient navigation measured by mean-first passage time of random walks. CHAOS (WOODBURY, N.Y.) 2012; 22:043129. [PMID: 23278064 DOI: 10.1063/1.4768665] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
For a random walk on a network, the mean first-passage time from a node i to another node j chosen stochastically, according to the equilibrium distribution of Markov chain representing the random walk is called the Kemeny constant, which is closely related to the navigability on the network. Thus, the configuration of a network that provides optimal or suboptimal navigation efficiency is a question of interest. It has been proved that complete graphs have the exact minimum Kemeny constant over all graphs. In this paper, by using another method we first prove that complete graphs are the optimal networks with a minimum Kemeny constant, which grows linearly with the network size. Then, we study the Kemeny constant of a class of sparse networks that exhibit remarkable scale-free and fractal features as observed in many real-life networks, which cannot be described by complete graphs. To this end, we determine the closed-form solutions to all eigenvalues and their degeneracies of the networks. Employing these eigenvalues, we derive the exact solution to the Kemeny constant, which also behaves linearly with the network size for some particular cases of networks. We further use the eigenvalue spectra to determine the number of spanning trees in the networks under consideration, which is in complete agreement with previously reported results. Our work demonstrates that scale-free and fractal properties are favorable for efficient navigation, which could be considered when designing networks with high navigation efficiency.
Collapse
Affiliation(s)
- Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China.
| | | | | | | |
Collapse
|
24
|
Lin Y, Julaiti A, Zhang Z. Mean first-passage time for random walks in general graphs with a deep trap. J Chem Phys 2012; 137:124104. [DOI: 10.1063/1.4754735] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Hwang S, Lee DS, Kahng B. First passage time for random walks in heterogeneous networks. PHYSICAL REVIEW LETTERS 2012; 109:088701. [PMID: 23002779 DOI: 10.1103/physrevlett.109.088701] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Indexed: 06/01/2023]
Abstract
The first passage time (FPT) for random walks is a key indicator of how fast information diffuses in a given system. Despite the role of FPT as a fundamental feature in transport phenomena, its behavior, particularly in heterogeneous networks, is not yet fully understood. Here, we study, both analytically and numerically, the scaling behavior of the FPT distribution to a given target node, averaged over all starting nodes. We find that random walks arrive quickly at a local hub, and therefore, the FPT distribution shows a crossover with respect to time from fast decay behavior (induced from the attractive effect to the hub) to slow decay behavior (caused by the exploring of the entire system). Moreover, the mean FPT is independent of the degree of the target node in the case of compact exploration. These theoretical results justify the necessity of using a random jump protocol (empirically used in search engines) and provide guidelines for designing an effective network to make information quickly accessible.
Collapse
Affiliation(s)
- S Hwang
- Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea
| | | | | |
Collapse
|
26
|
Wu B, Lin Y, Zhang Z, Chen G. Trapping in dendrimers and regular hyperbranched polymers. J Chem Phys 2012; 137:044903. [DOI: 10.1063/1.4737635] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Meyer B, Agliari E, Bénichou O, Voituriez R. Exact calculations of first-passage quantities on recursive networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:026113. [PMID: 22463285 DOI: 10.1103/physreve.85.026113] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Indexed: 05/31/2023]
Abstract
We present general methods to exactly calculate mean first-passage quantities on self-similar networks defined recursively. In particular, we calculate the mean first-passage time and the splitting probabilities associated to a source and one or several targets; averaged quantities over a given set of sources (e.g., same-connectivity nodes) are also derived. The exact estimate of such quantities highlights the dependency of first-passage processes with respect to the source-target distance, which has recently revealed to be a key parameter in characterizing transport in complex media. We explicitly perform calculations for different classes of recursive networks [finitely ramified fractals, scale-free (trans)fractals, nonfractals, mixtures between fractals and nonfractals, nondecimable hierarchical graphs] of arbitrary size. Our approach unifies and significantly extends the available results in the field.
Collapse
Affiliation(s)
- B Meyer
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Case Courrier 121, Université Paris 6, 4 Place Jussieu, FR-75255 Paris Cedex, France
| | | | | | | |
Collapse
|
28
|
Zhang Z, Yang Y, Lin Y. Random walks in modular scale-free networks with multiple traps. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:011106. [PMID: 22400511 DOI: 10.1103/physreve.85.011106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 11/15/2011] [Indexed: 05/31/2023]
Abstract
Extensive empirical investigation has shown that a plethora of real networks synchronously exhibit scale-free and modular structure and it is thus of great importance to uncover the effects of these two striking properties on various dynamical processes occurring on such networks. In this paper, we examine two cases of random walks performed on a class of modular scale-free networks with multiple traps located at several given nodes. We first derive a formula of the mean first-passage time (MFPT) for a general network, which is the mean of the expected time to absorption originating from a specific node, averaged over all nontrap starting nodes. Although the computation is complex, the expression of the formula is exact; moreover, the computational approach and procedure are independent of the number and position of the traps. We then determine analytically the MFPT for the two random walks being considered. The obtained analytical results are in complete agreement with the numerical ones. Our results show that the number and location of traps play an important role in the behavior of the MFPT, since for both cases the MFPT grows as a power-law function of the number of nodes, but their exponents are quite different. We demonstrate that the root of the difference in the behavior of MFPT is attributed to the modular and scale-free topologies of the networks. This work can deepen the understanding of diffusion on networks with modular and scale-free architecture and motivate relevant studies for random walks running on complex random networks with multiple traps.
Collapse
Affiliation(s)
- Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China.
| | | | | |
Collapse
|
29
|
Tejedor V, Bénichou O, Voituriez R. Close or connected: distance and connectivity effects on transport in networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:066102. [PMID: 21797436 DOI: 10.1103/physreve.83.066102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Indexed: 05/31/2023]
Abstract
We develop an analytical approach that provides the dependence of the mean first-passage time (MFPT) for random walks on complex networks both on the target connectivity and on the source-target distance. Our approach puts forward two strongly different behaviors depending on the type-compact or non compact-of the random walk. In the case of non compact exploration, we show that the MFPT scales linearly with the inverse connectivity of the target and is largely independent of the starting point. On the contrary, in the compact case, the MFPT is controlled by the source-target distance, and we find that unexpectedly the target connectivity becomes irrelevant for remote targets.
Collapse
Affiliation(s)
- V Tejedor
- Laboratoire de Physique Théorique de la Matière Condensée, UMR CNRS/UPMC, Université Pierre et Marie Curie, 4 Place Jussieu, F-75255 Paris Cedex, France
| | | | | |
Collapse
|
30
|
Roberts AP, Haynes CP. Electrostatic approximation of source-to-target mean first-passage times on networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:031113. [PMID: 21517460 DOI: 10.1103/physreve.83.031113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Indexed: 05/30/2023]
Abstract
We show that the distance dependence of the source-to-target mean-first-passage time (MFPT) on a finite network with M links is approximately given by 2M times the target-to-shell resistance. For networks on which a random walker is transient the long-range MFPT is well approximated by the site-dependent resistance from the target to infinity. The result extends a recent scaling result for the MFPT to site-inhomogeneous lattices where the MFPT depends on the location of the source and targets and can be highly source-target asymmetric.
Collapse
Affiliation(s)
- Anthony P Roberts
- School of Mathematics and Physics, University of Queensland, Brisbane 4072, Australia
| | | |
Collapse
|
31
|
Bénichou O, Chevalier C, Meyer B, Voituriez R. Facilitated diffusion of proteins on chromatin. PHYSICAL REVIEW LETTERS 2011; 106:038102. [PMID: 21405302 DOI: 10.1103/physrevlett.106.038102] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Indexed: 05/30/2023]
Abstract
We present a theoretical model of facilitated diffusion of proteins in the cell nucleus. This model, which takes into account the successive binding and unbinding events of proteins to DNA, relies on a fractal description of the chromatin which has been recently evidenced experimentally. Facilitated diffusion is shown quantitatively to be favorable for a fast localization of a target locus by a transcription factor and even to enable the minimization of the search time by tuning the affinity of the transcription factor with DNA. This study shows the robustness of the facilitated diffusion mechanism, invoked so far only for linear conformations of DNA.
Collapse
Affiliation(s)
- O Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée CNRS-UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
| | | | | | | |
Collapse
|
32
|
Tejedor V, Bénichou O, Voituriez R, Moreau M. Response to targeted perturbations for random walks on networks. Phys Rev E 2011; 82:056106. [PMID: 21230544 DOI: 10.1103/physreve.82.056106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Indexed: 11/07/2022]
Abstract
We introduce a general framework, applicable to a broad class of random walks on networks, that quantifies the response of the mean first-passage time to a target node to a local perturbation of the network, both in the context of attacks (damaged link) or strategies of transport enhancement (added link). This approach enables to determine explicitly the dependence of this response on geometric parameters (such as the network size and the localization of the perturbation) and on the intensity of the perturbation. In particular, it is showed that the relative variation of the mean first-passage time is independent of the network size, and remains significant in the large size limit. Furthermore, in the case of noncompact exploration of the network, it is found that a targeted perturbation keeps a substantial impact on transport properties for any localization of the damaged link.
Collapse
Affiliation(s)
- Vincent Tejedor
- Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie-CNRS, Paris, France
| | | | | | | |
Collapse
|
33
|
Zhang Z, Gao S, Xie W. Impact of degree heterogeneity on the behavior of trapping in Koch networks. CHAOS (WOODBURY, N.Y.) 2010; 20:043112. [PMID: 21198082 PMCID: PMC7117061 DOI: 10.1063/1.3493406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/02/2010] [Indexed: 05/30/2023]
Abstract
Previous work shows that the mean first-passage time (MFPT) for random walks to a given hub node (node with maximum degree) in uncorrelated random scale-free networks is closely related to the exponent γ of power-law degree distribution P(k) ∼ k(-γ), which describes the extent of heterogeneity of scale-free network structure. However, extensive empirical research indicates that real networked systems also display ubiquitous degree correlations. In this paper, we address the trapping issue on the Koch networks, which is a special random walk with one trap fixed at a hub node. The Koch networks are power-law with the characteristic exponent γ in the range between 2 and 3, they are either assortative or disassortative. We calculate exactly the MFPT that is the average of first-passage time from all other nodes to the trap. The obtained explicit solution shows that in large networks the MFPT varies lineally with node number N, which is obviously independent of γ and is sharp contrast to the scaling behavior of MFPT observed for uncorrelated random scale-free networks, where γ influences qualitatively the MFPT of trapping problem.
Collapse
Affiliation(s)
- Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China.
| | | | | |
Collapse
|
34
|
Agliari E, Burioni R, Manzotti A. Effective target arrangement in a deterministic scale-free graph. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:011118. [PMID: 20866576 DOI: 10.1103/physreve.82.011118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Indexed: 05/29/2023]
Abstract
We study the random-walk problem on a deterministic scale-free network, in the presence of a set of static, identical targets; due to the strong inhomogeneity of the underlying structure the mean first-passage time (MFPT), meant as a measure of transport efficiency, is expected to depend sensitively on the position of targets. We consider several spatial arrangements for targets and we calculate, mainly rigorously, the related MFPT, where the average is taken over all possible starting points and over all possible paths. For all the cases studied, the MFPT asymptotically scales like ∼Nθ, being N the volume of the substrate and θ ranging from 1-log 2/log 3, for central target(s), to 1, for a single peripheral target.
Collapse
Affiliation(s)
- E Agliari
- Dipartimento di Fisica, Università degli Studi di Parma, viale GP Usberti 7/A, 43100 Parma, Italy
| | | | | |
Collapse
|
35
|
Zhang Z, Wu B, Zhang H, Zhou S, Guan J, Wang Z. Determining global mean-first-passage time of random walks on Vicsek fractals using eigenvalues of Laplacian matrices. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:031118. [PMID: 20365708 DOI: 10.1103/physreve.81.031118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Indexed: 05/29/2023]
Abstract
The family of Vicsek fractals is one of the most important and frequently studied regular fractal classes, and it is of considerable interest to understand the dynamical processes on this treelike fractal family. In this paper, we investigate discrete random walks on the Vicsek fractals, with the aim to obtain the exact solutions to the global mean-first-passage time (GMFPT), defined as the average of first-passage time (FPT) between two nodes over the whole family of fractals. Based on the known connections between FPTs, effective resistance, and the eigenvalues of graph Laplacian, we determine implicitly the GMFPT of the Vicsek fractals, which is corroborated by numerical results. The obtained closed-form solution shows that the GMFPT approximately grows as a power-law function with system size (number of all nodes), with the exponent lies between 1 and 2. We then provide both the upper bound and lower bound for GMFPT of general trees, and show that the leading behavior of the upper bound is the square of system size and the dominating scaling of the lower bound varies linearly with system size. We also show that the upper bound can be achieved in linear chains and the lower bound can be reached in star graphs. This study provides a comprehensive understanding of random walks on the Vicsek fractals and general treelike networks.
Collapse
Affiliation(s)
- Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China.
| | | | | | | | | | | |
Collapse
|
36
|
Zhang Z, Xie W, Zhou S, Li M, Guan J. Distinct scalings for mean first-passage time of random walks on scale-free networks with the same degree sequence. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:061111. [PMID: 20365122 DOI: 10.1103/physreve.80.061111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/25/2009] [Indexed: 05/29/2023]
Abstract
In general, the power-law degree distribution has profound influence on various dynamical processes defined on scale-free networks. In this paper, we will show that power-law degree distribution alone does not suffice to characterize the behavior of trapping problems on scale-free networks, which is an integral major theme of interest for random walks in the presence of an immobile perfect absorber. In order to achieve this goal, we study random walks on a family of one-parameter (denoted by q) scale-free networks with identical degree sequence for the full range of parameter q, in which a trap is located at a fixed site. We obtain analytically or numerically the mean first-passage time (MFPT) for the trapping issue. In the limit of large network order (number of nodes), for the whole class of networks, the MFPT increases asymptotically as a power-law function of network order with the exponent obviously different for different parameter q, which suggests that power-law degree distribution itself is not sufficient to characterize the scaling behavior of MFPT for random walks at least trapping problem, performed on scale-free networks.
Collapse
Affiliation(s)
- Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China.
| | | | | | | | | |
Collapse
|
37
|
Tejedor V, Bénichou O, Voituriez R. Global mean first-passage times of random walks on complex networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:065104. [PMID: 20365216 DOI: 10.1103/physreve.80.065104] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Indexed: 05/29/2023]
Abstract
We present a general framework, applicable to a broad class of random walks on complex networks, which provides a rigorous lower bound for the mean first-passage time of a random walker to a target site averaged over its starting position, the so-called global mean first-passage time (GMFPT). This bound is simply expressed in terms of the equilibrium distribution at the target and implies a minimal scaling of the GMFPT with the network size. We show that this minimal scaling, which can be arbitrarily slow, is realized under the simple condition that the random walk is transient at the target site and independently of the small-world, scale-free, or fractal properties of the network. Last, we put forward that the GMFPT to a specific target is not a representative property of the network since the target averaged GMFPT satisfies much more restrictive bounds.
Collapse
Affiliation(s)
- V Tejedor
- Laboratoire de Physique Théorique de la Matière Condensée (UMR 7600), Université Pierre et Marie Curie, 4 Place Jussieu, Paris Cedex, France
| | | | | |
Collapse
|
38
|
Zhang Z, Lin Y, Gao S, Zhou S, Guan J, Li M. Trapping in scale-free networks with hierarchical organization of modularity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:051120. [PMID: 20364960 DOI: 10.1103/physreve.80.051120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/27/2009] [Indexed: 05/29/2023]
Abstract
A wide variety of real-life networks share two remarkable generic topological properties: scale-free behavior and modular organization, and it is natural and important to study how these two features affect the dynamical processes taking place on such networks. In this paper, we investigate a simple stochastic process--trapping problem, a random walk with a perfect trap fixed at a given location, performed on a family of hierarchical networks that exhibit simultaneously striking scale-free and modular structure. We focus on a particular case with the immobile trap positioned at the hub node having the largest degree. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping problem, which is the mean of the node-to-trap first-passage time over the entire network. The exact expression for the MFPT is calculated through the recurrence relations derived from the special construction of the hierarchical networks. The obtained rigorous formula corroborated by extensive direct numerical calculations exhibits that the MFPT grows algebraically with the network order. Concretely, the MFPT increases as a power-law function of the number of nodes with the exponent much less than 1. We demonstrate that the hierarchical networks under consideration have more efficient structure for transport by diffusion in contrast with other analytically soluble media including some previously studied scale-free networks. We argue that the scale-free and modular topologies are responsible for the high efficiency of the trapping process on the hierarchical networks.
Collapse
Affiliation(s)
- Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China.
| | | | | | | | | | | |
Collapse
|