1
|
Monti JM, Srivastava I, Silbert LE, Lechman JB, Grest GS. Fractal dimensions of jammed packings with power-law particle size distributions in two and three dimensions. Phys Rev E 2023; 108:L042902. [PMID: 37978630 DOI: 10.1103/physreve.108.l042902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 11/19/2023]
Abstract
Static structure factors are computed for large-scale, mechanically stable, jammed packings of frictionless spheres (three dimensions) and disks (two dimensions) with broad, power-law size dispersity characterized by the exponent -β. The static structure factor exhibits diverging power-law behavior for small wave numbers, allowing us to identify a structural fractal dimension d_{f}. In three dimensions, d_{f}≈2.0 for 2.5≤β≤3.8, such that each of the structure factors can be collapsed onto a universal curve. In two dimensions, we instead find 1.0≲d_{f}≲1.34 for 2.1≤β≤2.9. Furthermore, we show that the fractal behavior persists when rattler particles are removed, indicating that the long-wavelength structural properties of the packings are controlled by the large particle backbone conferring mechanical rigidity to the system. A numerical scheme for computing structure factors for triclinic unit cells is presented and employed to analyze the jammed packings.
Collapse
Affiliation(s)
- Joseph M Monti
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Ishan Srivastava
- Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Leonardo E Silbert
- School of Math, Science, and Engineering, Central New Mexico Community College, Albuquerque, New Mexico 87106, USA
| | - Jeremy B Lechman
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
2
|
Frusawa H. Non-hyperuniform metastable states around a disordered hyperuniform state of densely packed spheres: stochastic density functional theory at strong coupling. SOFT MATTER 2021; 17:8810-8831. [PMID: 34585714 DOI: 10.1039/d1sm01052b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The disordered and hyperuniform structures of densely packed spheres near and at jamming are characterized by vanishing of long-wavelength density fluctuations, or equivalently by long-range power-law decay of the direct correlation function (DCF). We focus on previous simulation results that exhibit the degradation of hyperuniformity in jammed structures while maintaining the long-range nature of the DCF to a certain length scale. Here we demonstrate that the field-theoretic formulation of stochastic density functional theory is relevant to explore the degradation mechanism. The strong-coupling expansion method of stochastic density functional theory is developed to obtain the metastable chemical potential considering the intermittent fluctuations in dense packings. The metastable chemical potential yields the analytical form of the metastable DCF that has a short-range cutoff inside the sphere while retaining the long-range power-law behavior. It is confirmed that the metastable DCF provides the zero-wavevector limit of the structure factor in quantitative agreement with the previous simulation results of degraded hyperuniformity. We can also predict the emergence of soft modes localized at the particle scale by plugging this metastable DCF into the linearized Dean-Kawasaki equation, a stochastic density functional equation.
Collapse
Affiliation(s)
- Hiroshi Frusawa
- Laboratory of Statistical Physics, Kochi University of Technology, Tosa-Yamada, Kochi 782-8502, Japan.
| |
Collapse
|
3
|
Hexner D, Liu AJ, Nagel SR. Two Diverging Length Scales in the Structure of Jammed Packings. PHYSICAL REVIEW LETTERS 2018; 121:115501. [PMID: 30265103 DOI: 10.1103/physrevlett.121.115501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 06/11/2018] [Indexed: 06/08/2023]
Abstract
At densities higher than the jamming transition for athermal, frictionless repulsive spheres we find two distinct length scales, both of which diverge as a power law as the transition is approached. The first, ξ_{Z}, is associated with the two-point correlation function for the number of contacts on two particles as a function of the particle separation. The second, ξ_{f}, is associated with contact-number fluctuations in subsystems of different sizes. On scales below ξ_{f}, the fluctuations are highly suppressed, similar to the phenomenon of hyperuniformity usually associated with density fluctuations. The exponents for the divergence of ξ_{Z} and ξ_{f} are different and appear to be different in two and three dimensions.
Collapse
Affiliation(s)
- Daniel Hexner
- The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA and Department of Physics and Astronomy, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrea J Liu
- Department of Physics and Astronomy, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sidney R Nagel
- The James Franck and Enrico Fermi Institutes and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
4
|
Ikeda A, Berthier L, Parisi G. Large-scale structure of randomly jammed spheres. Phys Rev E 2017; 95:052125. [PMID: 28618611 DOI: 10.1103/physreve.95.052125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 06/07/2023]
Abstract
We numerically analyze the density field of three-dimensional randomly jammed packings of monodisperse soft frictionless spherical particles, paying special attention to fluctuations occurring at large length scales. We study in detail the two-point static structure factor at low wave vectors in Fourier space. We also analyze the nature of the density field in real space by studying the large-distance behavior of the two-point pair correlation function, of density fluctuations in subsystems of increasing sizes, and of the direct correlation function. We show that such real space analysis can be greatly improved by introducing a coarse-grained density field to disentangle genuine large-scale correlations from purely local effects. Our results confirm that both Fourier and real space signatures of vanishing density fluctuations at large scale are absent, indicating that randomly jammed packings are not hyperuniform. In addition, we establish that the pair correlation function displays a surprisingly complex structure at large distances, which is however not compatible with the long-range negative correlation of hyperuniform systems but fully compatible with an analytic form for the structure factor. This implies that the direct correlation function is short ranged, as we also demonstrate directly. Our results reveal that density fluctuations in jammed packings do not follow the behavior expected for random hyperuniform materials, but display instead a more complex behavior.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221, Centre National de la Recherche Scientifique and Université de Montpellier, 34095 Montpellier, France
| | - Giorgio Parisi
- Dipartimento di Fisica, Università Degli Studi di Roma La Sapienza, Nanotec, Consiglio Nazionale delle Ricerche, UOS Rome, Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Piazzale A. Moro 2, 00185 Rome, Italy
| |
Collapse
|
5
|
Atkinson S, Stillinger FH, Torquato S. Static structural signatures of nearly jammed disordered and ordered hard-sphere packings: Direct correlation function. Phys Rev E 2016; 94:032902. [PMID: 27739707 DOI: 10.1103/physreve.94.032902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 06/06/2023]
Abstract
The nonequilibrium process by which hard-particle systems may be compressed into disordered, jammed states has received much attention because of its wide utility in describing a broad class of amorphous materials. While dynamical signatures are known to precede jamming, the task of identifying static structural signatures indicating the onset of jamming have proven more elusive. The observation that compressing hard-particle packings towards jamming is accompanied by an anomalous suppression of density fluctuations (termed "hyperuniformity") has paved the way for the analysis of jamming as an "inverted critical point" in which the direct correlation function c(r), rather than the total correlation function h(r), diverges. We expand on the notion that c(r) provides both universal and protocol-specific information as packings approach jamming. By considering the degree and position of singularities (discontinuities in the nth derivative) as well as how they are changed by the convolutions found in the Ornstein-Zernike equation, we establish quantitative statements about the structure of c(r) with regards to singularities it inherits from h(r). These relations provide a concrete means of identifying features that must be expressed in c(r) if one hopes to reproduce various details in the pair correlation function accurately and provide stringent tests on the associated numerics. We also analyze the evolution of systems of three-dimensional monodisperse hard spheres of diameter D as they approach ordered and disordered jammed configurations. For the latter, we use the Lubachevsky-Stillinger (LS) molecular dynamics and Torquato-Jiao (TJ) sequential linear programming algorithms, which both generate disordered packings, but can show perceptible structural differences. We identify a short-ranged scaling c(r)∝-1/r as r→0 that accompanies the formation of the delta function at c(D) that indicates the formation of contacts in all cases, and show that this scaling behavior is, in this case, a consequence of the growing long rangedness in c(r), e.g., c∝-1/r^{2} as r→∞ for disordered packings. At densities in the vicinity of the freezing density, we find striking qualitative differences in the structure factor S(k) as well as c(r) between TJ- and LS-generated configurations, including the early formation of a delta function at c(D) in the TJ algorithm's packings, indicating the early formation of clusters of particles in near contact. Both algorithms yield structure factors that tend towards zero in the low-wave-number limit as jamming is approached. Correspondingly, we observe the expected power-law decay in c(r) for large r, in agreement with previous theoretical work. Our work advances the notion that static signatures are exhibited by hard-particle packings as they approach jamming and underscores the utility of the direct correlation function as a sensitive means of monitoring for the appearance of an incipient rigid network.
Collapse
Affiliation(s)
- Steven Atkinson
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Frank H Stillinger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Program of Applied and Computational Mathematics, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
6
|
Atkinson S, Zhang G, Hopkins AB, Torquato S. Critical slowing down and hyperuniformity on approach to jamming. Phys Rev E 2016; 94:012902. [PMID: 27575201 DOI: 10.1103/physreve.94.012902] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Indexed: 06/06/2023]
Abstract
Hyperuniformity characterizes a state of matter that is poised at a critical point at which density or volume-fraction fluctuations are anomalously suppressed at infinite wavelengths. Recently, much attention has been given to the link between strict jamming (mechanical rigidity) and (effective or exact) hyperuniformity in frictionless hard-particle packings. However, in doing so, one must necessarily study very large packings in order to access the long-ranged behavior and to ensure that the packings are truly jammed. We modify the rigorous linear programming method of Donev et al. [J. Comput. Phys. 197, 139 (2004)JCTPAH0021-999110.1016/j.jcp.2003.11.022] in order to test for jamming in putatively collectively and strictly jammed packings of hard disks in two dimensions. We show that this rigorous jamming test is superior to standard ways to ascertain jamming, including the so-called "pressure-leak" test. We find that various standard packing protocols struggle to reliably create packings that are jammed for even modest system sizes of N≈10^{3} bidisperse disks in two dimensions; importantly, these packings have a high reduced pressure that persists over extended amounts of time, meaning that they appear to be jammed by conventional tests, though rigorous jamming tests reveal that they are not. We present evidence that suggests that deviations from hyperuniformity in putative maximally random jammed (MRJ) packings can in part be explained by a shortcoming of the numerical protocols to generate exactly jammed configurations as a result of a type of "critical slowing down" as the packing's collective rearrangements in configuration space become locally confined by high-dimensional "bottlenecks" from which escape is a rare event. Additionally, various protocols are able to produce packings exhibiting hyperuniformity to different extents, but this is because certain protocols are better able to approach exactly jammed configurations. Nonetheless, while one should not generally expect exact hyperuniformity for disordered packings with rattlers, we find that when jamming is ensured, our packings are very nearly hyperuniform, and deviations from hyperuniformity correlate with an inability to ensure jamming, suggesting that strict jamming and hyperuniformity are indeed linked. This raises the possibility that the ideal MRJ packings have no rattlers. Our work provides the impetus for the development of packing algorithms that produce large disordered strictly jammed packings that are rattler free, which is an outstanding, challenging task.
Collapse
Affiliation(s)
- Steven Atkinson
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Ge Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Adam B Hopkins
- Uniformity Labs, 1600 Adams Drive, Suite 104, Menlo Park, California 94025, USA
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Program of Applied and Computational Mathematics, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
7
|
Wu Y, Olsson P, Teitel S. Search for hyperuniformity in mechanically stable packings of frictionless disks above jamming. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052206. [PMID: 26651688 DOI: 10.1103/physreve.92.052206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 06/05/2023]
Abstract
We numerically simulate mechanically stable packings of soft-core, frictionless, bidisperse disks in two dimensions, above the jamming packing fraction ϕ(J). For configurations with a fixed isotropic global stress tensor, we investigate the fluctuations of the local packing fraction ϕ(r) to test whether such configurations display the hyperuniformity that has been claimed to exist exactly at ϕ(J). For our configurations, generated by a rapid quench protocol, we find that hyperuniformity persists only out to a finite length scale and that this length scale appears to remain finite as the system stress decreases towards zero, i.e., towards the jamming transition. Our result suggests that the presence of hyperuniformity at jamming may be sensitive to the specific protocol used to construct the jammed configurations.
Collapse
Affiliation(s)
- Yegang Wu
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
8
|
Ikeda A, Berthier L. Thermal fluctuations, mechanical response, and hyperuniformity in jammed solids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012309. [PMID: 26274164 DOI: 10.1103/physreve.92.012309] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Jamming is a geometric phase transition occurring in dense particle systems in the absence of temperature. We use computer simulations to analyze the effect of thermal fluctuations on several signatures of the transition. We show that scaling laws for bulk and shear moduli only become relevant when thermal fluctuations are extremely small, and propose their relative ratio as a quantitative signature of jamming criticality. Despite the nonequilibrium nature of the transition, we find that thermally induced fluctuations and mechanical responses obey equilibrium fluctuation-dissipation relations near jamming, provided the appropriate fluctuating component of the particle displacements is analyzed. This shows that mechanical moduli can be directly measured from particle positions in mechanically unperturbed packings, and suggests that the definition of a "nonequilibrium index" is unnecessary for amorphous materials. We find that fluctuations of particle displacements are spatially correlated, and define a transverse and a longitudinal correlation length scale which both diverge as the jamming transition is approached. We analyze the frozen component of density fluctuations and find that it displays signatures of nearly hyperuniform behavior at large length scales. This demonstrates that hyperuniformity in jammed packings is unrelated to a vanishing compressibility and explains why it appears remarkably robust against temperature and density variations. Differently from jamming criticality, obstacles preventing the observation of hyperuniformity in colloidal systems do not originate from thermal fluctuations.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, Japan
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, Montpellier, France
| |
Collapse
|
9
|
Klatt MA, Torquato S. Characterization of maximally random jammed sphere packings: Voronoi correlation functions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052120. [PMID: 25493753 DOI: 10.1103/physreve.90.052120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 06/04/2023]
Abstract
We characterize the structure of maximally random jammed (MRJ) sphere packings by computing the Minkowski functionals (volume, surface area, and integrated mean curvature) of their associated Voronoi cells. The probability distribution functions of these functionals of Voronoi cells in MRJ sphere packings are qualitatively similar to those of an equilibrium hard-sphere liquid and partly even to the uncorrelated Poisson point process, implying that such local statistics are relatively structurally insensitive. This is not surprising because the Minkowski functionals of a single Voronoi cell incorporate only local information and are insensitive to global structural information. To improve upon this, we introduce descriptors that incorporate nonlocal information via the correlation functions of the Minkowski functionals of two cells at a given distance as well as certain cell-cell probability density functions. We evaluate these higher-order functions for our MRJ packings as well as equilibrium hard spheres and the Poisson point process. It is shown that these Minkowski correlation and density functions contain visibly more information than the corresponding standard pair-correlation functions. We find strong anticorrelations in the Voronoi volumes for the hyperuniform MRJ packings, consistent with previous findings for other pair correlations [A. Donev et al., Phys. Rev. Lett. 95, 090604 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.090604], indicating that large-scale volume fluctuations are suppressed by accompanying large Voronoi cells with small cells, and vice versa. In contrast to the aforementioned local Voronoi statistics, the correlation functions of the Voronoi cells qualitatively distinguish the structure of MRJ sphere packings (prototypical glasses) from that of not only the Poisson point process but also the correlated equilibrium hard-sphere liquids. Moreover, while we did not find any perfect icosahedra (the locally densest possible structure in which a central sphere contacts 12 neighbors) in the MRJ packings, a preliminary Voronoi topology analysis indicates the presence of strongly distorted icosahedra.
Collapse
Affiliation(s)
- Michael A Klatt
- Department of Chemistry, Department of Physics, Princeton University, Princeton, New Jersey 08544, USA and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institut für Theoretische Physik, Staudtstraße 7, 91058 Erlangen, Germany
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
10
|
Chumakov AI, Monaco G, Fontana A, Bosak A, Hermann RP, Bessas D, Wehinger B, Crichton WA, Krisch M, Rüffer R, Baldi G, Carini G, Carini G, D'Angelo G, Gilioli E, Tripodo G, Zanatta M, Winkler B, Milman V, Refson K, Dove MT, Dubrovinskaia N, Dubrovinsky L, Keding R, Yue YZ. Role of disorder in the thermodynamics and atomic dynamics of glasses. PHYSICAL REVIEW LETTERS 2014; 112:025502. [PMID: 24484025 DOI: 10.1103/physrevlett.112.025502] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Indexed: 06/03/2023]
Abstract
We measured the density of vibrational states (DOS) and the specific heat of various glassy and crystalline polymorphs of SiO2. The typical (ambient) glass shows a well-known excess of specific heat relative to the typical crystal (α-quartz). This, however, holds when comparing a lower-density glass to a higher-density crystal. For glassy and crystalline polymorphs with matched densities, the DOS of the glass appears as the smoothed counterpart of the DOS of the corresponding crystal; it reveals the same number of the excess states relative to the Debye model, the same number of all states in the low-energy region, and it provides the same specific heat. This shows that glasses have higher specific heat than crystals not due to disorder, but because the typical glass has lower density than the typical crystal.
Collapse
Affiliation(s)
- A I Chumakov
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | - G Monaco
- European Synchrotron Radiation Facility, F-38043 Grenoble, France and Dipartimento di Fisica, Università di Trento, I-38123 Povo, Trento, Italy
| | - A Fontana
- Dipartimento di Fisica, Università di Trento, I-38123 Povo, Trento, Italy and IPCF-CNR, UOS di Roma, c/o Roma University La Sapienza, I-00185 Roma, Italy
| | - A Bosak
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | - R P Hermann
- Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany and Faculté des Sciences, Université de Liège, B-4000 Liège, Belgium
| | - D Bessas
- Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany and Faculté des Sciences, Université de Liège, B-4000 Liège, Belgium
| | - B Wehinger
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | - W A Crichton
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | - M Krisch
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | - R Rüffer
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
| | - G Baldi
- IMEM-CNR, Area delle Scienze, I-43124 Parma, Italy
| | - G Carini
- IPCF-CNR, UOS di Messina, Viale F. Stagno d'Alcontres 37, I-98158 Messina, Italy
| | - G Carini
- Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, I-98166 Messina, Italy
| | - G D'Angelo
- Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, I-98166 Messina, Italy
| | - E Gilioli
- IMEM-CNR, Area delle Scienze, I-43124 Parma, Italy
| | - G Tripodo
- Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, I-98166 Messina, Italy
| | - M Zanatta
- IPCF-CNR, UOS di Roma, c/o Roma University La Sapienza, I-00185 Roma, Italy and Dipartimento di Fisica, Università di Perugia, I-60123 Perugia, Italy
| | - B Winkler
- Geowissenschaften, Goethe-Universität, Altenhoeferallee 1, D-60438, Frankfurt a.M., Germany
| | - V Milman
- Accelrys, 334 Cambridge Science Park, Cambridge CB4 0WN, United Kingdom
| | - K Refson
- STFC Rutherford Appleton Laboratory, Chilton, Didcot Oxfordshire OX11 0QX, United Kingdom
| | - M T Dove
- Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - N Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth, Germany
| | - L Dubrovinsky
- Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - R Keding
- Max Planck Institut for the Science of Light, D-91058 Erlangen, Germany
| | - Y Z Yue
- Section of Chemistry, Aalborg University, DK-9000 Aalborg, Denmark
| |
Collapse
|
11
|
Kurita R, Weeks ER. Incompressibility of polydisperse random-close-packed colloidal particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:030401. [PMID: 22060321 DOI: 10.1103/physreve.84.030401] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/04/2011] [Indexed: 05/31/2023]
Abstract
We use confocal microscopy to study the compressibility of a random-close-packed sample of colloidal particles. To do this, we introduce an algorithm to estimate the size of each particle. Taking into account their sizes, we compute the compressibility of the sample as a function of wave vector q, and find that this compressibility vanishes linearly as q→0, showing that the packing structure is incompressible. The particle sizes must be considered to calculate the compressibility properly. These results also suggest that the experimental packing is hyperuniform.
Collapse
Affiliation(s)
- Rei Kurita
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | | |
Collapse
|
12
|
Berthier L, Chaudhuri P, Coulais C, Dauchot O, Sollich P. Suppressed compressibility at large scale in jammed packings of size-disperse spheres. PHYSICAL REVIEW LETTERS 2011; 106:120601. [PMID: 21517290 DOI: 10.1103/physrevlett.106.120601] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 02/18/2011] [Indexed: 05/30/2023]
Abstract
We analyze the large-scale structure and fluctuations of jammed packings of size-disperse spheres, produced in a granular experiment as well as numerically. While the structure factor of the packings reveals no unusual behavior for small wave vectors, the compressibility displays an anomalous linear dependence at low wave vectors and vanishes when q→0. We show that such behavior occurs because jammed packings of size-disperse spheres have no bulk fluctuations of the volume fraction and are thus hyperuniform, a property not observed experimentally before. Our results apply to arbitrary particle size distributions. For continuous distributions, we derive a perturbative expression for the compressibility that is accurate for polydispersity up to about 30%.
Collapse
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS and Université Montpellier 2, Montpellier, France
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Kurita R, Weeks ER. Experimental study of random-close-packed colloidal particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:011403. [PMID: 20866616 DOI: 10.1103/physreve.82.011403] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Indexed: 05/29/2023]
Abstract
A collection of spherical particles can be packed tightly together into an amorphous packing known as "random close packing" (RCP). This structure is of interest as a model for the arrangement of molecules in simple liquids and glasses, as well as the arrangement of particles in sand piles. We use confocal microscopy to study the arrangement of colloidal particles in an experimentally realized RCP state. We image a large volume containing more than 450,000 particles with a resolution of each particle position to better than 0.02 particle diameters. While the arrangement of the particles satisfies multiple criteria for being random, we also observe a small fraction (less than 3%) of tiny crystallites (4 particles or fewer). These regions pack slightly better and are thus associated with locally higher densities. The structure factor of our sample at long length scales is nonzero, S(0)=0.049±0.008, suggesting that there are long wavelength density fluctuations in our sample. These may be due to polydispersity or tiny crystallites. Our results suggest that experimentally realizable RCP systems may be different from simulated RCP systems, in particular, with the presence of these long wavelength density fluctuations.
Collapse
Affiliation(s)
- Rei Kurita
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|