1
|
Nwogbaga I, Camley BA. Cell shape and orientation control galvanotactic accuracy. SOFT MATTER 2024; 20:8866-8887. [PMID: 39479920 DOI: 10.1039/d4sm00952e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Eukaryotic cells sense and follow electric fields during wound healing and embryogenesis - this is called galvanotaxis. Galvanotaxis is believed to be driven by the redistribution of "sensors" - potentially transmembrane proteins or other molecules - through electrophoresis and electroosmosis. Here, we update our previous model of the limits of galvanotaxis due to the stochasticity of sensor movements to account for cell shape and orientation. Computing the Fisher information shows that, in principle, cells have more information about the electric field direction when their long axis is parallel to the field. However, for weak fields, maximum-likelihood estimators may have lower variability when the cell's long axis is perpendicular to the field. In an alternate possibility, we find that if cells instead estimate the field direction by taking the average of all the sensor locations as its directional cue ("vector sum"), this introduces a bias towards the short axis, an effect not present for isotropic cells. We also explore the possibility that cell elongation arises downstream of sensor redistribution. We argue that if sensors migrate to the cell's rear, the cell will tend to expand perpendicular the field - as is more commonly observed - but if sensors migrate to the front, the cell will tend to elongate parallel to the field.
Collapse
Affiliation(s)
- Ifunanya Nwogbaga
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Brian A Camley
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Nwogbaga I, Camley BA. Coupling cell shape and velocity leads to oscillation and circling in keratocyte galvanotaxis. Biophys J 2023; 122:130-142. [PMID: 36397670 PMCID: PMC9822803 DOI: 10.1016/j.bpj.2022.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/03/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
During wound healing, fish keratocyte cells undergo galvanotaxis where they follow a wound-induced electric field. In addition to their stereotypical persistent motion, keratocytes can develop circular motion without a field or oscillate while crawling in the field direction. We developed a coarse-grained phenomenological model that captures these keratocyte behaviors. We fit this model to experimental data on keratocyte response to an electric field being turned on. A critical element of our model is a tendency for cells to turn toward their long axis, arising from a coupling between cell shape and velocity, which gives rise to oscillatory and circular motion. Galvanotaxis is influenced not only by the field-dependent responses, but also cell speed and cell shape relaxation rate. When the cell reacts to an electric field being turned on, our model predicts that stiff, slow cells react slowly but follow the signal reliably. Cells that polarize and align to the field at a faster rate react more quickly and follow the signal more reliably. When cells are exposed to a field that switches direction rapidly, cells follow the average of field directions, while if the field is switched more slowly, cells follow a "staircase" pattern. Our study indicated that a simple phenomenological model coupling cell speed and shape is sufficient to reproduce a broad variety of different keratocyte behaviors, ranging from circling to oscillation to galvanotactic response, by only varying a few parameters.
Collapse
Affiliation(s)
- Ifunanya Nwogbaga
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Brian A Camley
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland; William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
3
|
Brand HR, Pleiner H. Two-fluid model for a fluid with tetrahedral-octupolar order. Phys Rev E 2021; 104:044705. [PMID: 34781489 DOI: 10.1103/physreve.104.044705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/05/2021] [Indexed: 11/07/2022]
Abstract
We investigate the macroscopic dynamics of a two-fluid system with tetrahedral order. As all normal-fluid two-fluid systems one has-compared to a simple fluid-the velocity difference between the two subsystems and the concentration of one component as additional macroscopic variables. Depending on the type of system, the concentration can either be a conserved quantity or relax on a long, but finite timescale. Due to the existence of the tetrahedral order such a system breaks parity symmetry. Here we discuss physical systems without preferred direction in real space, meaning that our description applies to optically isotropic materials. We find a number of reversible as well as dissipative dynamic cross-coupling terms due to the additional octupolar order, when compared to a fluid mixture. As the most interesting cross-coupling term from an experimental point of view, we identify a dissipative cross-coupling between the relative velocity and the usual velocity gradients. Applying a shear flow in a plane, this dissipative cross-coupling leads to a velocity difference perpendicular to the shear plane. As a result one can obtain a spatially homogeneous oscillation of the relative velocity. In addition, this induced relative velocity can couple as a function of time and space to the concentration, which gives rise to an overdamped propagating soundlike mode, where the overdamping arises from the fact that velocity difference is a macroscopic variable and not strictly conserved. We also show that electric field gradients are connected with an analogous reversible cross-coupling and can lead in a planar shear geometry to an overdamped propagating mode as well.
Collapse
Affiliation(s)
- Helmut R Brand
- Department of Physics, University of Bayreuth, 95440 Bayreuth, Germany.,Max Planck Institute for Polymer Research, 55021 Mainz, Germany
| | - Harald Pleiner
- Max Planck Institute for Polymer Research, 55021 Mainz, Germany
| |
Collapse
|
4
|
Koyano Y, Suematsu NJ, Kitahata H. Rotational motion of a camphor disk in a circular region. Phys Rev E 2019; 99:022211. [PMID: 30934219 DOI: 10.1103/physreve.99.022211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 12/15/2022]
Abstract
In a two-dimensional axisymmetric system, the system symmetry allows rotational or oscillatory motion as stable stationary motion for a symmetric self-propelled particle. In the present paper, we studied the motion of a camphor disk confined in a two-dimensional circular region. By reducing the mathematical model describing the dynamics of the motion of a camphor disk and the concentration field of camphor molecules on a water surface, we analyzed the reduced equations around a bifurcation point where the rest state at the center of the system becomes unstable. As a result, we found that rotational motion is stably realized through the double-Hopf bifurcation from the rest state. The theoretical results were confirmed by numerical calculation and corresponded well to the experimental results.
Collapse
Affiliation(s)
- Yuki Koyano
- Department of Physics, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Nobuhiko J Suematsu
- Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan.,Meiji Institute of Advanced Study of Mathematical Sciences (MIMS), Meiji University, 4-21-1 Nakano, Tokyo 164-8525, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
5
|
Ohta T, Monzel C, Becker AS, Ho AD, Tanaka M. Simple Physical Model Unravels Influences of Chemokine on Shape Deformation and Migration of Human Hematopoietic Stem Cells. Sci Rep 2018; 8:10630. [PMID: 30006633 PMCID: PMC6045678 DOI: 10.1038/s41598-018-28750-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/29/2018] [Indexed: 01/15/2023] Open
Abstract
We studied the dynamic behavior of human hematopoietic stem cells (HSC) on the in vitro model of bone marrow surfaces in the absence and presence of chemokine (SDF1α). The deformation and migration of cells were investigated by varying the chemokine concentration and surface density of ligand molecules. Since HSC used in this study were primary cells extracted from the human umbilical cord blood, it is not possible to introduce molecular reporter systems before or during the live cell imaging. To account for the experimental observations, we propose a simple and general theoretical model for cell crawling. In contrast to other theoretical models reported previously, our model focuses on the nonlinear coupling between shape deformation and translational motion and is free from any molecular-level process. Therefore, it is ideally suited for the comparison with our experimental results. We have demonstrated that the results in the absence of SDF1α were well recapitulated by the linear model, while the nonlinear model is necessary to reproduce the elongated migration observed in the presence of SDF1α. The combination of the simple theoretical model and the label-free, live cell observations of human primary cells opens a large potential to numerically identify the differential effects of extrinsic factors such as chemokines, growth factors, and clinical drugs on dynamic phenotypes of primary cells.
Collapse
Affiliation(s)
- Takao Ohta
- Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan. .,Toyota Physical and Chemical Research Institute, Nagakute, Aichi, 480-1192, Japan. .,Center for Integrative Medicine and Physics, Institute for Advanced Studies, Kyoto University, 606-8501, Kyoto, Japan.
| | - Cornelia Monzel
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, D69210, Heidelberg, Germany.,Experimental Medical Physics, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Alexandra S Becker
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, D69210, Heidelberg, Germany
| | - Anthony D Ho
- Department of Medicine V, Heidelberg University, D69120, Heidelberg, Germany
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Studies, Kyoto University, 606-8501, Kyoto, Japan. .,Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, D69210, Heidelberg, Germany.
| |
Collapse
|
6
|
Tarama M. Swinging motion of active deformable particles in Poiseuille flow. Phys Rev E 2017; 96:022602. [PMID: 28950457 DOI: 10.1103/physreve.96.022602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 11/07/2022]
Abstract
Dynamics of active deformable particles in an external Poiseuille flow is investigated. To make the analysis general, we employ time-evolution equations derived from symmetry considerations that take into account an elliptical shape deformation. First, we clarify the relation of our model to that of rigid active particles. Then, we study the dynamical modes that active deformable particles exhibit by changing the strength of the external flow. We emphasize the difference between the active particles that tend to self-propel parallel to the elliptical shape deformation and those self-propelling perpendicularly. In particular, a swinging motion around the centerline far from the channel walls is discussed in detail.
Collapse
Affiliation(s)
- Mitsusuke Tarama
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan
| |
Collapse
|
7
|
Koyano Y, Gryciuk M, Skrobanska P, Malecki M, Sumino Y, Kitahata H, Gorecki J. Relationship between the size of a camphor-driven rotor and its angular velocity. Phys Rev E 2017; 96:012609. [PMID: 29347181 DOI: 10.1103/physreve.96.012609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Indexed: 06/07/2023]
Abstract
We consider a rotor made of two camphor disks glued below the ends of a plastic stripe. The disks are floating on a water surface and the plastic stripe does not touch the surface. The system can rotate around a vertical axis located at the center of the stripe. The disks dissipate camphor molecules. The driving momentum comes from the nonuniformity of surface tension resulting from inhomogeneous surface concentration of camphor molecules around the disks. We investigate the stationary angular velocity as a function of rotor radius ℓ. For large ℓ the angular velocity decreases for increasing ℓ. At a specific value of ℓ the angular velocity reaches its maximum and, for short ℓ it rapidly decreases. Such behavior is confirmed by a simple numerical model. The model also predicts that there is a critical rotor size below which it does not rotate. Within the introduced model we analyze the type of this bifurcation.
Collapse
Affiliation(s)
- Yuki Koyano
- Department of Physics, Chiba University, Chiba 263-8522, Japan
| | - Marian Gryciuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| | - Paulina Skrobanska
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| | - Maciej Malecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| | - Yutaka Sumino
- Department of Applied Physics, Faculty of Science, Tokyo University of Science, Tokyo 125-8585, Japan
| | | | - Jerzy Gorecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| |
Collapse
|
8
|
Pande J, Merchant L, Krüger T, Harting J, Smith AS. Effect of body deformability on microswimming. SOFT MATTER 2017; 13:3984-3993. [PMID: 28504290 DOI: 10.1039/c7sm00181a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work we consider the following question: given a mechanical microswimming mechanism, does increased deformability of the swimmer body hinder or promote the motility of the swimmer? To answer this we run immersed-boundary-lattice-Boltzmann simulations of a microswimmer composed of deformable beads connected with springs. We find that the same deformations in the beads can result in different effects on the swimming velocity, namely an enhancement or a reduction, depending on the other parameters. To understand this we determine analytically the velocity of the swimmer, starting from the forces driving the motion and assuming that the deformations in the beads are known as functions of time and are much smaller than the beads themselves. We find that to the lowest order, only the driving frequency mode of the surface deformations contributes to the swimming velocity, and comparison to the simulations shows that both the velocity-promoting and velocity-hindering effects of bead deformability are reproduced correctly by the theory in the limit of small bead deformations. For the case of active deformations we show that there are critical values of the spring constant - which for a general swimmer corresponds to its main elastic degree of freedom - which decide whether the body deformability is beneficial for motion or not.
Collapse
Affiliation(s)
- Jayant Pande
- PULS Group, Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstraße 49b, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
9
|
Camley BA, Zhao Y, Li B, Levine H, Rappel WJ. Crawling and turning in a minimal reaction-diffusion cell motility model: Coupling cell shape and biochemistry. Phys Rev E 2017; 95:012401. [PMID: 28208438 DOI: 10.1103/physreve.95.012401] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Indexed: 11/07/2022]
Abstract
We study a minimal model of a crawling eukaryotic cell with a chemical polarity controlled by a reaction-diffusion mechanism describing Rho GTPase dynamics. The size, shape, and speed of the cell emerge from the combination of the chemical polarity, which controls the locations where actin polymerization occurs, and the physical properties of the cell, including its membrane tension. We find in our model both highly persistent trajectories, in which the cell crawls in a straight line, and turning trajectories, where the cell transitions from crawling in a line to crawling in a circle. We discuss the controlling variables for this turning instability and argue that turning arises from a coupling between the reaction-diffusion mechanism and the shape of the cell. This emphasizes the surprising features that can arise from simple links between cell mechanics and biochemistry. Our results suggest that similar instabilities may be present in a broad class of biochemical descriptions of cell polarity.
Collapse
Affiliation(s)
- Brian A Camley
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - Yanxiang Zhao
- Department of Mathematics, The George Washington University, Washington, DC 20052, USA
| | - Bo Li
- Department of Mathematics and Graduate Program in Quantitative Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Herbert Levine
- Department of Bioengineering, Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
10
|
Koyano Y, Sakurai T, Kitahata H. Oscillatory motion of a camphor grain in a one-dimensional finite region. Phys Rev E 2016; 94:042215. [PMID: 27841473 DOI: 10.1103/physreve.94.042215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Indexed: 06/06/2023]
Abstract
The motion of a self-propelled particle is affected by its surroundings, such as boundaries or external fields. In this paper, we investigated the bifurcation of the motion of a camphor grain, as a simple actual self-propelled system, confined in a one-dimensional finite region. A camphor grain exhibits oscillatory motion or remains at rest around the center position in a one-dimensional finite water channel, depending on the length of the water channel and the resistance coefficient. A mathematical model including the boundary effect is analytically reduced to an ordinary differential equation. Linear stability analysis reveals that the Hopf bifurcation occurs, reflecting the symmetry of the system.
Collapse
Affiliation(s)
- Yuki Koyano
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Tatsunari Sakurai
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
11
|
Wen FL, Leung KT, Chen HY. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions. Phys Rev E 2016; 94:012401. [PMID: 27575158 DOI: 10.1103/physreve.94.012401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 11/07/2022]
Abstract
Actin-based motility is important for many cellular processes. In this article we extend our previous studies of an actin-propelled circular disk in two dimensions to an actin-propelled spherical bead in three dimensions. We find that for an achiral load the couplings between the motion of the load and the actin network induce a series of bifurcations, starting with a transition from rest to moving state, followed by a transition from straight to planar curves, and finally a further transition from motion in a plane to one with torsion. To address the intriguing, experimentally observed chiral motility of the bacterium Listeria monocytogenes, we also study the motility of a spherical load with a built-in chirality. For such a chiral load, stable circular trajectories are no longer found in numerical simulations. Instead, helical trajectories with handedness that depends on the chirality of the load are found. Our results reveal the relation between the symmetry of actin network and the trajectories of actin-propelled loads.
Collapse
Affiliation(s)
- Fu-Lai Wen
- Laboratory for Physical Biology, RIKEN Quantitative Biology Center, Kobe 650-0047, Japan
| | - Kwan-Tai Leung
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Department of Physics, National Central University, Taoyuan 32001, Taiwan, R.O.C
| | - Hsuan-Yi Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Department of Physics, National Central University, Taoyuan 32001, Taiwan, R.O.C.,Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan, R.O.C
| |
Collapse
|
12
|
Wen FL, Chen HY, Leung KT. Statistics of actin-propelled trajectories in noisy environments. Phys Rev E 2016; 93:062405. [PMID: 27415296 DOI: 10.1103/physreve.93.062405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 06/06/2023]
Abstract
Actin polymerization is ubiquitously utilized to power the locomotion of eukaryotic cells and pathogenic bacteria in living systems. Inevitably, actin polymerization and depolymerization proceed in a fluctuating environment that renders the locomotion stochastic. Previously, we have introduced a deterministic model that manages to reproduce actin-propelled trajectories in experiments, but not to address fluctuations around them. To remedy this, here we supplement the deterministic model with noise terms. It enables us to compute the effects of fluctuating actin density and forces on the trajectories. Specifically, the mean-squared displacement (MSD) of the trajectories is computed and found to show a super-ballistic scaling with an exponent 3 in the early stage, followed by a crossover to a normal, diffusive scaling of exponent 1 in the late stage. For open-end trajectories such as straights and S-shaped curves, the time of crossover matches the decay time of orientational order of the velocities along trajectories, suggesting that it is the spreading of velocities that leads to the crossover. We show that the super-ballistic scaling of MSD arises from the initial, linearly increasing correlation of velocities, before time translational symmetry is established. When the spreading of velocities reaches a steady state in the long-time limit, short-range correlation then yields a diffusive scaling in MSD. In contrast, close-loop trajectories like circles exhibit localized periodic motion, which inhibits spreading. The initial super-ballistic scaling of MSD arises from velocity correlation that both linearly increases and oscillates in time. Finally, we find that the above statistical features of the trajectories transcend the nature of noises, be it additive or multiplicative, and generalize to other self-propelled systems that are not necessarily actin based.
Collapse
Affiliation(s)
- Fu-Lai Wen
- Laboratory for Physical Biology, RIKEN Quantitative Biology Center, Kobe 650-0047, Japan
| | - Hsuan-Yi Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
- Department of Physics, National Central University, Taoyuan 32001, Taiwan, R.O.C
- Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan, R.O.C
| | - Kwan-Tai Leung
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
- Department of Physics, National Central University, Taoyuan 32001, Taiwan, R.O.C
| |
Collapse
|
13
|
Küchler N, Löwen H, Menzel AM. Getting drowned in a swirl: Deformable bead-spring model microswimmers in external flow fields. Phys Rev E 2016; 93:022610. [PMID: 26986380 DOI: 10.1103/physreve.93.022610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Deformability is a central feature of many types of microswimmers, e.g., for artificially generated self-propelled droplets. Here, we analyze deformable bead-spring microswimmers in an externally imposed solvent flow field as simple theoretical model systems. We focus on their behavior in a circular swirl flow in two spatial dimensions. Linear (straight) two-bead swimmers are found to circle around the swirl with a slight drift to the outside with increasing activity. In contrast to that, we observe for triangular three-bead or squarelike four-bead swimmers a tendency of being drawn into the swirl and finally getting drowned, although a radial inward component is absent in the flow field. During one cycle around the swirl, the self-propulsion direction of an active triangular or squarelike swimmer remains almost constant, while their orbits become deformed exhibiting an "egglike" shape. Over time, the swirl flow induces slight net rotations of these swimmer types, which leads to net rotations of the egg-shaped orbits. Interestingly, in certain cases, the orbital rotation changes sense when the swimmer approaches the flow singularity. Our predictions can be verified in real-space experiments on artificial microswimmers.
Collapse
Affiliation(s)
- Niklas Küchler
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Andreas M Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Virga EG. Octupolar order in two dimensions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:63. [PMID: 26123766 DOI: 10.1140/epje/i2015-15063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
Octupolar order is described in two space dimensions in terms of the maxima (and conjugated minima) of the probability density associated with a third-rank, fully symmetric and traceless tensor. Such a representation is shown to be equivalent to diagonalizing the relevant third-rank tensor, an equivalence which however is only valid in the two-dimensional case.
Collapse
Affiliation(s)
- Epifanio G Virga
- Dipartimento di Matematica, Università di Pavia, Via Ferrata 5, I-27100, Pavia, Italy.
| |
Collapse
|
15
|
Tarama M, Menzel AM, Löwen H. Deformable microswimmer in a swirl: capturing and scattering dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032907. [PMID: 25314504 DOI: 10.1103/physreve.90.032907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Indexed: 06/04/2023]
Abstract
Inspired by the classical Kepler and Rutherford problem, we investigate an analogous setup in the context of active microswimmers: the behavior of a deformable microswimmer in a swirl flow. First, we identify new steady bound states in the swirl flow and analyze their stability. Second, we study the dynamics of a self-propelled swimmer heading towards the vortex center, and we observe the subsequent capturing and scattering dynamics. We distinguish between two major types of swimmers, those that tend to elongate perpendicularly to the propulsion direction and those that pursue a parallel elongation. While the first ones can get caught by the swirl, the second ones were always observed to be scattered, which proposes a promising escape strategy. This offers a route to design artificial microswimmers that show the desired behavior in complicated flow fields. It should be straightforward to verify our results in a corresponding quasi-two-dimensional experiment using self-propelled droplets on water surfaces.
Collapse
Affiliation(s)
- Mitsusuke Tarama
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan and Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany and Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Andreas M Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Yoshinaga N. Spontaneous motion and deformation of a self-propelled droplet. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012913. [PMID: 24580303 DOI: 10.1103/physreve.89.012913] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Indexed: 06/03/2023]
Abstract
The time evolution equation of motion and shape are derived for a self-propelled droplet driven by a chemical reaction. The coupling between the chemical reaction and motion makes an inhomogeneous concentration distribution as well as a surrounding flow leading to the instability of a stationary state. The instability results in spontaneous motion by which the shape of the droplet deforms from a sphere. We found that the self-propelled droplet is elongated perpendicular to the direction of motion and is characterized as a pusher.
Collapse
Affiliation(s)
- Natsuhiko Yoshinaga
- WPI, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
17
|
Ebata H, Sano M. Bifurcation from stable holes to replicating holes in vibrated dense suspensions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:053007. [PMID: 24329351 DOI: 10.1103/physreve.88.053007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Indexed: 06/03/2023]
Abstract
In vertically vibrated starch suspensions, we observe bifurcations from stable holes to replicating holes. Above a certain acceleration, finite-amplitude deformations of the vibrated surface continue to grow until void penetrates fluid layers, and a hole forms. We studied experimentally and theoretically the parameter dependence of the holes and their stabilities. In suspensions of small dispersed particles, the circular shapes of the holes are stable. However, we find that larger particles or lower surface tension of water destabilize the circular shapes; this indicates the importance of capillary forces acting on the dispersed particles. Around the critical acceleration for bifurcation, holes show intermittent large deformations as a precursor to hole replication. We applied a phenomenological model for deformable domains, which is used in reaction-diffusion systems. The model can explain the basic dynamics of the holes, such as intermittent behavior, probability distribution functions of deformation, and time intervals of replication. Results from the phenomenological model match the linear growth rate below criticality that was estimated from experimental data.
Collapse
Affiliation(s)
- H Ebata
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - M Sano
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Tarama M, Menzel AM, ten Hagen B, Wittkowski R, Ohta T, Löwen H. Dynamics of a deformable active particle under shear flow. J Chem Phys 2013; 139:104906. [DOI: 10.1063/1.4820416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Mitsusuke Tarama
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Andreas M. Menzel
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Borge ten Hagen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Raphael Wittkowski
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| | - Takao Ohta
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Soft Matter Center, Ochanomizu University, Tokyo 112-0012, Japan
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Tarama M, Ohta T. Oscillatory motions of an active deformable particle. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062912. [PMID: 23848753 DOI: 10.1103/physreve.87.062912] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Indexed: 06/02/2023]
Abstract
We investigate dynamics of an active particle in which shape deformations occur spontaneously. In two dimensions, the deformations are expanded in terms of the Fourier series and the couplings of different modes are taken into consideration truncated up to lower orders. We focus our attention on the special symmetrical structure between the coupled equations of n- and 2n-mode deformations for n=1, and those for n=2. We show that an oscillatory bifurcation occurs for n=2, which corresponds mathematically to the bifurcation for n=1 where a straight motion becomes unstable and a circular motion appears. At the oscillatory state, the particle undergoes either a spinning motion or a standing oscillation of shape deformations.
Collapse
|
20
|
Wen FL, Leung KT, Chen HY. Trajectories of Listeria-type motility in two dimensions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061902. [PMID: 23367971 DOI: 10.1103/physreve.86.061902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Indexed: 06/01/2023]
Abstract
Force generated by actin polymerization is essential in cell motility and the locomotion of organelles or bacteria such as Listeria monocytogenes. Both in vivo and in vitro experiments on actin-based motility have observed geometrical trajectories including straight lines, circles, S-shaped curves, and translating figure eights. This paper reports a phenomenological model of an actin-propelled disk in two dimensions that generates geometrical trajectories. Our model shows that when the evolutions of actin density and force per filament on the disk are strongly coupled to the disk self-rotation, it is possible for a straight trajectory to lose its stability. When the instability is due to a pitchfork bifurcation, the resulting trajectory is a circle; a straight trajectory can also lose stability through a Hopf bifurcation, and the resulting trajectory is an S-shaped curve. We also show that a half-coated disk, which mimics the distribution of functionalized proteins in Listeria, also undergoes similar symmetry-breaking bifurcations when the straight trajectory loses stability. For both a fully coated disk and a half-coated disk, when the trajectory is an S-shaped curve, the angular frequency of the disk self-rotation is different from that of the disk trajectory. However, for circular trajectories, these angular frequencies are different for a fully coated disk but the same for a half-coated disk.
Collapse
Affiliation(s)
- Fu-Lai Wen
- Department of Physics, National Central University, Jhongli, Taiwan 32001, Republic of China
| | | | | |
Collapse
|
21
|
Tarama M, Ohta T. Spinning motion of a deformable self-propelled particle in two dimensions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:464129. [PMID: 23114593 DOI: 10.1088/0953-8984/24/46/464129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We investigate the dynamics of a single deformable self-propelled particle which undergoes a spinning motion in a two-dimensional space. Equations of motion are derived from symmetry arguments for three kinds of variable. One is a vector which represents the velocity of the center of mass. The second is a traceless symmetric tensor representing deformation. The third is an antisymmetric tensor for spinning degree of freedom. By numerical simulations, we have obtained a variety of dynamical states due to interplay between the spinning motion and the deformation. The bifurcations of these dynamical states are analyzed by the simplified equations of motion.
Collapse
|
22
|
Yoshinaga N, Nagai KH, Sumino Y, Kitahata H. Drift instability in the motion of a fluid droplet with a chemically reactive surface driven by Marangoni flow. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:016108. [PMID: 23005492 DOI: 10.1103/physreve.86.016108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 06/15/2012] [Indexed: 06/01/2023]
Abstract
We theoretically derive the amplitude equations for a self-propelled droplet driven by Marangoni flow. As advective flow driven by surface tension gradient is enhanced, the stationary state becomes unstable and the droplet starts to move. The velocity of the droplet is determined from a cubic nonlinear term in the amplitude equations. The obtained critical point and the characteristic velocity are well supported by numerical simulations.
Collapse
Affiliation(s)
- Natsuhiko Yoshinaga
- WPI - Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
| | | | | | | |
Collapse
|
23
|
Yabunaka S, Ohta T, Yoshinaga N. Self-propelled motion of a fluid droplet under chemical reaction. J Chem Phys 2012; 136:074904. [DOI: 10.1063/1.3685805] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Shitara K, Hiraiwa T, Ohta T. Deformable self-propelled domain in an excitable reaction-diffusion system in three dimensions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:066208. [PMID: 21797462 DOI: 10.1103/physreve.83.066208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/16/2011] [Indexed: 05/31/2023]
Abstract
We derive a set of equations of motion for an isolated domain in an excitable reaction-diffusion system in three dimensions. In the singular limit where the interface is infinitesimally thin, the motion of the center of mass coupled with deformation is investigated near the drift bifurcation where a motionless domain becomes unstable and undergoes migration. This is an extension of our previous theory in two dimensions. We show that there are three basic motions of a domain, straight motion, rotating motion, and helical motion. The last one is a characteristic of three dimensions. The phase diagram of these three solutions is given in the parameter space of the original reaction-diffusion equations.
Collapse
Affiliation(s)
- K Shitara
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
25
|
Ohkuma T, Ohta T. Deformable self-propelled particles with a global coupling. CHAOS (WOODBURY, N.Y.) 2010; 20:023101. [PMID: 20590297 DOI: 10.1063/1.3374362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have proposed a model of deformable self-propelled particles in which the time-evolution equations are given in terms of the center-of-mass velocity and a nematic order parameter representing the motion-induced deformation [T. Ohta and T. Ohkuma, Phys. Rev. Lett. 102, 154101 (2009)]. We investigate its many-body problem applying a global orientational coupling. Depending on the strength of the interaction, the self-propelled particles exhibit various kinds of collective dynamics and chaotic behavior: a ballistic procession state, a scattered state, a coherently phase synchronized state, two types of in-phase synchronized state, and an anomalously diffusive state. The phase reduction method for the weak coupling regime reveals the bifurcations between the secular collective motions. The phase boundary among the chaos regime and the synchronized regimes is determined by the linear stability analysis of the synchronized states.
Collapse
Affiliation(s)
- Takahiro Ohkuma
- Department of Physics, School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|