1
|
Jou D, Galenko PK. Coarse-graining for fast dynamics of order parameters in the phase-field model. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0203. [PMID: 29311202 PMCID: PMC5784094 DOI: 10.1098/rsta.2017.0203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 05/25/2023]
Abstract
In standard descriptions, the master equation can be obtained by coarse-graining with the application of the hypothesis of full local thermalization that is equivalent to the local thermodynamic equilibrium. By contrast, fast transformations proceed in the absence of local equilibrium and the master equation must be obtained with the absence of thermalization. In the present work, a non-Markovian master equation leading, in specific cases of relaxation to local thermodynamic equilibrium, to hyperbolic evolution equations for a binary alloy, is derived for a system with two order parameters. One of them is a conserved order parameter related to the atomistic composition, and the other one is a non-conserved order parameter, which is related to phase field. A microscopic basis for phenomenological phase-field models of fast phase transitions, when the transition is so fast that there is not sufficient time to achieve local thermalization between two successive elementary processes in the system, is provided. In a particular case, when the relaxation to local thermalization proceeds by the exponential law, the obtained coarse-grained equations are related to the hyperbolic phase-field model. The solution of the model equations is obtained to demonstrate non-equilibrium phenomenon of solute trapping which appears in rapid growth of dendritic crystals.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.
Collapse
Affiliation(s)
- D Jou
- Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - P K Galenko
- Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| |
Collapse
|
2
|
Reichhardt C, Olson Reichhardt CJ. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:026501. [PMID: 27997373 DOI: 10.1088/1361-6633/80/2/026501] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | |
Collapse
|
3
|
Heinonen V, Achim CV, Kosterlitz JM, Ying SC, Lowengrub J, Ala-Nissila T. Consistent Hydrodynamics for Phase Field Crystals. PHYSICAL REVIEW LETTERS 2016; 116:024303. [PMID: 26824543 DOI: 10.1103/physrevlett.116.024303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 06/05/2023]
Abstract
We use the amplitude expansion in the phase field crystal framework to formulate an approach where the fields describing the microscopic structure of the material are coupled to a hydrodynamic velocity field. The model is shown to reduce to the well-known macroscopic theories in appropriate limits, including compressible Navier-Stokes and wave equations. Moreover, we show that the dynamics proposed allows for long wavelength phonon modes and demonstrate the theory numerically showing that the elastic excitations in the system are relaxed through phonon emission.
Collapse
Affiliation(s)
- V Heinonen
- COMP Centre of Excellence, Department of Applied Physics, Aalto University, School of Science, P.O. Box 11100, FI-00076 Aalto, Finland
| | - C V Achim
- COMP Centre of Excellence, Department of Applied Physics, Aalto University, School of Science, P.O. Box 11100, FI-00076 Aalto, Finland
| | - J M Kosterlitz
- Department of Physics, Brown University, Providence, Rhode Island 02912-1843, USA
| | - See-Chen Ying
- Department of Physics, Brown University, Providence, Rhode Island 02912-1843, USA
| | - J Lowengrub
- Department of Mathematics, University of California, Irvine, California 92697, USA
- Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697, USA
| | - T Ala-Nissila
- COMP Centre of Excellence, Department of Applied Physics, Aalto University, School of Science, P.O. Box 11100, FI-00076 Aalto, Finland
- Department of Physics, Brown University, Providence, Rhode Island 02912-1843, USA
| |
Collapse
|
4
|
Heinonen V, Achim CV, Elder KR, Buyukdagli S, Ala-Nissila T. Phase-field-crystal models and mechanical equilibrium. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032411. [PMID: 24730856 DOI: 10.1103/physreve.89.032411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Indexed: 05/11/2023]
Abstract
Phase-field-crystal (PFC) models constitute a field theoretical approach to solidification, melting, and related phenomena at atomic length and diffusive time scales. One of the advantages of these models is that they naturally contain elastic excitations associated with strain in crystalline bodies. However, instabilities that are diffusively driven towards equilibrium are often orders of magnitude slower than the dynamics of the elastic excitations, and are thus not included in the standard PFC model dynamics. We derive a method to isolate the time evolution of the elastic excitations from the diffusive dynamics in the PFC approach and set up a two-stage process, in which elastic excitations are equilibrated separately. This ensures mechanical equilibrium at all times. We show concrete examples demonstrating the necessity of the separation of the elastic and diffusive time scales. In the small-deformation limit this approach is shown to agree with the theory of linear elasticity.
Collapse
Affiliation(s)
- V Heinonen
- COMP Centre of Excellence at the Department of Applied Physics, Aalto University, School of Science, P. O. Box 11100, FI-00076 Aalto, Finland
| | - C V Achim
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - K R Elder
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - S Buyukdagli
- COMP Centre of Excellence at the Department of Applied Physics, Aalto University, School of Science, P. O. Box 11100, FI-00076 Aalto, Finland
| | - T Ala-Nissila
- COMP Centre of Excellence at the Department of Applied Physics, Aalto University, School of Science, P. O. Box 11100, FI-00076 Aalto, Finland and Department of Physics, Brown University, Providence, Rhode Island 02912-1843, USA
| |
Collapse
|
5
|
Menzel AM, Ohta T, Löwen H. Active crystals and their stability. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022301. [PMID: 25353466 DOI: 10.1103/physreve.89.022301] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 06/04/2023]
Abstract
A recently introduced active phase field crystal model describes the formation of ordered resting and traveling crystals in systems of self-propelled particles. Increasing the active drive, a resting crystal can be forced to perform collectively ordered migration as a single traveling object. We demonstrate here that these ordered migrating structures are linearly stable. In other words, during migration, the single-crystalline texture together with the globally ordered collective motion is preserved even on large length scales. Furthermore, we consider self-propelled particles on a substrate that are surrounded by a thin fluid film. We find that in this case the resulting hydrodynamic interactions can destabilize the order.
Collapse
Affiliation(s)
- Andreas M Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany and Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Takao Ohta
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan and Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Jou D, Galenko PK. Coarse graining for the phase-field model of fast phase transitions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042151. [PMID: 24229159 DOI: 10.1103/physreve.88.042151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Indexed: 05/11/2023]
Abstract
Fast phase transitions under lack of local thermalization between successive elementary steps of the physical process are treated analytically. Non-Markovian master equations are derived for fast processes, which do not have enough time to reach energy or momentum thermalization during rapid phase change or freezing of a highly nonequilibrium system. These master equations provide a further physical basis for evolution and transport equations of the phase-field model used previously in the analyses of fast phase transitions.
Collapse
Affiliation(s)
- D Jou
- Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | | |
Collapse
|
7
|
Galenko PK, Gomez H, Kropotin NV, Elder KR. Unconditionally stable method and numerical solution of the hyperbolic phase-field crystal equation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:013310. [PMID: 23944586 DOI: 10.1103/physreve.88.013310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Indexed: 05/11/2023]
Abstract
The phase-field crystal model (PFC model) resolves systems on atomic length scales and diffusive time scales and lies in between standard phase-field modeling and atomistic methods. More recently a hyperbolic or modified PFC model was introduced to describe fast (propagative) and slow (diffusive) dynamics. We present a finite-element method for solving the hyperbolic PFC equation, introducing an unconditionally stable time integration algorithm. A spatial discretization is used with the traditional C^{0}-continuous Lagrange elements with quadratic shape functions. The space-time discretization of the PFC equation is second-order accurate in time and is shown analytically to be unconditionally stable. Numerical simulations are used to show a monotonic decrease of the free energy during the transition from the homogeneous state to stripes. Benchmarks on modeling patterns in two-dimensional space are carried out. The benchmarks show the applicability of the proposed algorithm for determining equilibrium states. Quantitatively, the proposed algorithm is verified for the problem of lattice parameter and velocity selection when a crystal invades a homogeneous unstable liquid.
Collapse
Affiliation(s)
- P K Galenko
- Friedrich-Schiller-Universität Jena, Physikalisch-Astronomische Fakultät, D-07737 Jena, Germany.
| | | | | | | |
Collapse
|
8
|
Menzel AM, Löwen H. Traveling and resting crystals in active systems. PHYSICAL REVIEW LETTERS 2013; 110:055702. [PMID: 23414036 DOI: 10.1103/physrevlett.110.055702] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/18/2012] [Indexed: 05/07/2023]
Abstract
A microscopic field theory for crystallization in active systems is proposed which unifies the phase-field-crystal model of freezing with the Toner-Tu theory for self-propelled particles. A wealth of different active crystalline states are predicted and characterized. In particular, for increasing strength of self-propulsion, a transition from a resting crystal to a traveling crystalline state is found where the particles migrate collectively while keeping their crystalline order. Our predictions, which are verifiable in experiments and in particle-resolved computer simulations, provide a starting point for the design of new active materials.
Collapse
Affiliation(s)
- Andreas M Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.
| | | |
Collapse
|
9
|
Elder KR, Rossi G, Kanerva P, Sanches F, Ying SC, Granato E, Achim CV, Ala-Nissila T. Patterning of heteroepitaxial overlayers from nano to micron scales. PHYSICAL REVIEW LETTERS 2012; 108:226102. [PMID: 23003626 DOI: 10.1103/physrevlett.108.226102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Indexed: 05/11/2023]
Abstract
Thin heteroepitaxial overlayers have been proposed as templates to generate stable, self-organized nanostructures at large length scales, with a variety of important technological applications. However, modeling strain-driven self-organization is a formidable challenge due to different length scales involved. In this Letter, we present a method for predicting the patterning of ultrathin films on micron length scales with atomic resolution. We make quantitative predictions for the type of superstructures (stripes, honeycomb, triangular) and length scale of pattern formation of two metal-metal systems, Cu on Ru(0001) and Cu on Pd(111). Our findings are in excellent agreement with previous experiments and call for future experimental investigations of such systems.
Collapse
Affiliation(s)
- K R Elder
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Granato E, Ramos JAP, Achim CV, Lehikoinen J, Ying SC, Ala-Nissila T, Elder KR. Glassy phases and driven response of the phase-field-crystal model with random pinning. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031102. [PMID: 22060323 DOI: 10.1103/physreve.84.031102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/10/2011] [Indexed: 05/31/2023]
Abstract
We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.
Collapse
Affiliation(s)
- E Granato
- Laboratório Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Jaatinen A, Ala-Nissila T. Eighth-order phase-field-crystal model for two-dimensional crystallization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:061602. [PMID: 21230677 DOI: 10.1103/physreve.82.061602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 11/19/2010] [Indexed: 05/30/2023]
Abstract
We present a derivation of the recently proposed eighth-order phase-field crystal model [A. Jaatinen, Phys. Rev. E 80, 031602 (2009)] for the crystallization of a solid from an undercooled melt. The model is used to study the planar growth of a two-dimensional hexagonal crystal, and the results are compared against similar results from dynamical density functional theory of Marconi and Tarazona, as well as other phase-field crystal models. We find that among the phase-field crystal models studied, the eighth-order fitting scheme gives results in good agreement with the density functional theory for both static and dynamic properties, suggesting it is an accurate and computationally efficient approximation to the density functional theory.
Collapse
Affiliation(s)
- A Jaatinen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 11000, FI-00076 Aalto, Finland
| | | |
Collapse
|
12
|
Huang ZF, Elder KR, Provatas N. Phase-field-crystal dynamics for binary systems: Derivation from dynamical density functional theory, amplitude equation formalism, and applications to alloy heterostructures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:021605. [PMID: 20866824 DOI: 10.1103/physreve.82.021605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Indexed: 05/11/2023]
Abstract
The dynamics of phase field crystal (PFC) modeling is derived from dynamical density functional theory (DDFT), for both single-component and binary systems. The derivation is based on a truncation up to the three-point direct correlation functions in DDFT, and the lowest order approximation using scale analysis. The complete amplitude equation formalism for binary PFC is developed to describe the coupled dynamics of slowly varying complex amplitudes of structural profile, zeroth-mode average atomic density, and system concentration field. Effects of noise (corresponding to stochastic amplitude equations) and species-dependent atomic mobilities are also incorporated in this formalism. Results of a sample application to the study of surface segregation and interface intermixing in alloy heterostructures and strained layer growth are presented, showing the effects of different atomic sizes and mobilities of alloy components. A phenomenon of composition overshooting at the interface is found, which can be connected to the surface segregation and enrichment of one of the atomic components observed in recent experiments of alloying heterostructures.
Collapse
Affiliation(s)
- Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|