1
|
Yadav M, Singh Y. Coarse-grained Hamiltonian and effective one component theory of colloidal suspensions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
2
|
Ghosh A, Schweizer KS. Microscopic theory of onset of decaging and bond-breaking activated dynamics in ultradense fluids with strong short-range attractions. Phys Rev E 2020; 101:060601. [PMID: 32688615 DOI: 10.1103/physreve.101.060601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/04/2020] [Indexed: 11/06/2022]
Abstract
We theoretically study thermally activated "in cage" elementary dynamical processes that precede full structural relaxation in ultradense particle liquids interacting via strong short-range attractive forces. The analysis is based on a microscopic theory formulated at the particle trajectory level built on the dynamic free energy concept and an explicit treatment of how attractive forces control the formation and lifetime of physical bonds. Mean time scales for bond breaking, the early stage of cage escape, and non-Fickian displacement by a fixed amount are analyzed in the repulsive glass, bonded repulsive (attractive) glass, fluid, and dense gel regimes. The theory predicts a strong length-scale-dependent growth of these time scales with attractive force strength at fixed packing fraction, a much weaker slowing down with density at fixed attraction strength, and a strong decoupling of the shorter bond-breaking time with the other two time scales that are controlled mainly by perturbed steric caging. All results are in good accord with simulations, and additional testable predictions are made. The classic statistical mechanical projection approximation of replacing all bare attractive and repulsive forces with a single effective force determined by pair structure incurs major errors for describing processes associated with thermally activated escape from transiently localized states.
Collapse
Affiliation(s)
- Ashesh Ghosh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois 61801, USA.,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Kenneth S Schweizer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois 61801, USA.,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Illinois 61801, USA.,Department of Material Science, University of Illinois at Urbana-Champaign, Illinois 61801, USA.,Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| |
Collapse
|
3
|
Ghosh A, Schweizer KS. Microscopic theory of the influence of strong attractive forces on the activated dynamics of dense glass and gel forming fluids. J Chem Phys 2019; 151:244502. [DOI: 10.1063/1.5129941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ashesh Ghosh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA
| | - Kenneth S. Schweizer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA
- Department of Material Science, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801, USA
| |
Collapse
|
4
|
Germain P, Amokrane S. Glass transition and reversible gelation in asymmetric binary mixtures: A study by mode coupling theory and molecular dynamics. Phys Rev E 2019; 100:042614. [PMID: 31770885 DOI: 10.1103/physreve.100.042614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 06/10/2023]
Abstract
The glass transition and the binodals of asymmetric binary mixtures are investigated from the effective fluid approach in the mode coupling theory and by molecular dynamics. Motivated by previous theoretical predictions, the hard-sphere mixture and the Asakura-Oosawa models are used to analyze experimental results from the literature, relative to polystyrene spheres mixed either with linear polymers or with dense microgel particles. In agreement with the experimental observations, the specificity of the depletant particles is shown to favor lower density gels. It further favors equilibrium gelation by reducing also the tendency of the system to phase separate. These results are confirmed by a phenomenological modification of the mode coupling theory in which the vertex functions are computed at an effective density lower than the actual one. A model effective potential in asymmetric mixtures of hard particles is used to further check this phenomenological modification against molecular dynamics simulation.
Collapse
Affiliation(s)
- Ph Germain
- Physique des Liquides et Milieux Complexes, Faculté des Sciences et Technologie, Université Paris Est (Créteil), 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - S Amokrane
- Physique des Liquides et Milieux Complexes, Faculté des Sciences et Technologie, Université Paris Est (Créteil), 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
| |
Collapse
|
5
|
Amokrane S, Germain P. α-relaxation, shear viscosity, and elastic moduli of hard-particle fluids from a mode-coupling theory with a retarded vertex. Phys Rev E 2019; 99:052120. [PMID: 31212463 DOI: 10.1103/physreve.99.052120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 06/09/2023]
Abstract
The recently proposed modification of the mode-coupling theory (MCT) in which the static structure used in the vertex is computed at a lower density than the actual one is tested on several dynamics-related properties. The predictions from this modified version of MCT calibrated on the one-component hard-sphere fluid are found in very good agreement with simulation data for one-component and binary hard-sphere fluids. They are also relevant for the stress moduli for models with attractive tails beyond the hard core. The clear improvement observed on several properties should give a new impetus to the use of MCT as a quantitative tool.
Collapse
Affiliation(s)
- S Amokrane
- Physique des Liquides et Milieux Complexes, Faculté des Sciences et Technologie, Université Paris-Est (Créteil), 61 Av. du Général de Gaulle, 94010 Créteil Cedex, France
| | - Ph Germain
- Physique des Liquides et Milieux Complexes, Faculté des Sciences et Technologie, Université Paris-Est (Créteil), 61 Av. du Général de Gaulle, 94010 Créteil Cedex, France
| |
Collapse
|
6
|
Harden JL, Guo H, Bertrand M, Shendruk TN, Ramakrishnan S, Leheny RL. Enhanced gel formation in binary mixtures of nanocolloids with short-range attraction. J Chem Phys 2018; 148:044902. [DOI: 10.1063/1.5007038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- James L. Harden
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Hongyu Guo
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Martine Bertrand
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Tyler N. Shendruk
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Subramanian Ramakrishnan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32312, USA
| | - Robert L. Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
7
|
Amokrane S, Tchangnwa Nya F, Ndjaka JM. Glass transition in hard-core fluids and beyond, using an effective static structure in the mode coupling theory. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:17. [PMID: 28210959 DOI: 10.1140/epje/i2017-11506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
The dynamical arrest in classical fluids is studied using a simple modification of the mode coupling theory (MCT) aimed at correcting its overestimation of the tendency to glass formation while preserving its overall structure. As in previous attempts, the modification is based on the idea of tempering the static pair correlations used as input. It is implemented in this work by computing the static structure at a different state point than the one used to solve the MCT equation for the intermediate scattering function, using the pure hard-sphere glass for calibration. The location of the glass transition predicted from this modification is found to agree with simulations data for a variety of systems --pure fluids and mixtures with either purely repulsive interaction potentials or ones with attractive contributions. Besides improving the predictions in the long-time limit, and so reducing the non-ergodicity domain, the same modification works as well for the time-dependent correlators.
Collapse
Affiliation(s)
- S Amokrane
- Physique des Liquides et Milieux Complexes, Faculté des Sciences et Technologie, Université Paris-Est (Créteil), 61 Av. du Général de Gaulle, 94010, Créteil Cedex, France.
| | - F Tchangnwa Nya
- Physique des Liquides et Milieux Complexes, Faculté des Sciences et Technologie, Université Paris-Est (Créteil), 61 Av. du Général de Gaulle, 94010, Créteil Cedex, France
- Département de Physique, Faculté des Sciences, Université de Maroua, BP 814, Maroua, Cameroon
| | - J M Ndjaka
- Département de Physique, Faculté des Sciences, Université de Yaoundé, I. B.P. 812, Yaoundé, Cameroon
| |
Collapse
|
8
|
Paganini IE, Pastorino C, Urrutia I. Structure, thermodynamic properties, and phase diagrams of few colloids confined in a spherical pore. J Chem Phys 2015; 142:244707. [PMID: 26133449 DOI: 10.1063/1.4923164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surface tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T - ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.
Collapse
Affiliation(s)
- Iván E Paganini
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, CNEA, Av.Gral. Paz 1499, 1650 Pcia. de Buenos Aires, Argentina
| | - Claudio Pastorino
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, CNEA, Av.Gral. Paz 1499, 1650 Pcia. de Buenos Aires, Argentina
| | - Ignacio Urrutia
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, CNEA, Av.Gral. Paz 1499, 1650 Pcia. de Buenos Aires, Argentina
| |
Collapse
|
9
|
Ndong Mintsa E, Germain P, Amokrane S. Bond lifetime and diffusion coefficient in colloids with short-range interactions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:21. [PMID: 25813606 DOI: 10.1140/epje/i2015-15021-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
We use molecular dynamics simulations to study the influence of short-range structures in the interaction potential between hard-sphere-like colloidal particles. Starting from model potentials and effective potentials in binary mixtures computed from the Ornstein-Zernike equations, we investigate the influence of the range and strength of a possible tail beyond the usual core repulsion or the presence of repulsive barriers. The diffusion coefficient and mean "bond" lifetimes are used as indicators of the effect of this structure on the dynamics. The existence of correlations between the variations of these quantities with the physical parameters is discussed to assess the interpretation of dynamics slowing down in terms of long-lived bonds. We also discuss the question of a universal behaviour determined by the second virial coefficient B ((2)) and the interplay of attraction and repulsion. While the diffusion coefficient follows the B ((2)) law for purely attractive tails, this is no longer true in the presence of repulsive barriers. Furthermore, the bond lifetime shows a dependence on the physical parameters that differs from that of the diffusion coefficient. This raises the question of the precise role of bonds on the dynamics slowing down in colloidal gels.
Collapse
Affiliation(s)
- E Ndong Mintsa
- Laboratoire "Physique de Liquides et Milieux Complexes", Faculté des Sciences et Technologie, Université Paris-Est, Créteil, 61 avenue du Général de Gaulle, 94010, Créteil Cedex, France
| | | | | |
Collapse
|
10
|
López-Sánchez E, Estrada-Álvarez CD, Pérez-Ángel G, Méndez-Alcaraz JM, González-Mozuelos P, Castañeda-Priego R. Demixing transition, structure, and depletion forces in binary mixtures of hard-spheres: The role of bridge functions. J Chem Phys 2013; 139:104908. [DOI: 10.1063/1.4820559] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Valadez-Pérez NE, Benavides AL, Schöll-Paschinger E, Castañeda-Priego R. Phase behavior of colloids and proteins in aqueous suspensions: Theory and computer simulations. J Chem Phys 2012; 137:084905. [PMID: 22938263 DOI: 10.1063/1.4747193] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Néstor E Valadez-Pérez
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 León, Guanajuato, Mexico
| | | | | | | |
Collapse
|
12
|
Ayadim A, Germain P, Amokrane S. Mode-coupling theory for the glass transition: test of the convolution approximation for short-range interactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:061502. [PMID: 22304092 DOI: 10.1103/physreve.84.061502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Indexed: 05/31/2023]
Abstract
We reexamine the convolution approximation commonly used in the mode-coupling theory (MCT) of nonergodic states of classical fluids. This approximation concerns the static correlation functions used as input in the MCT treatment of the dynamics. Besides the hard-sphere model, we consider interaction potentials that present a short-range tail, either attractive or repulsive, beyond the hard core. By using accurate static correlation functions obtained from the fundamental measures functional for hard spheres, we show that the role of three-body direct correlations can be more significant than what is inferred from previous simple ansatzs for pure hard spheres. This may in particular impact the location of the glass transition line and the nonergodicity parameter.
Collapse
Affiliation(s)
- A Ayadim
- Physique des Liquides et Milieux Complexes, Faculté des Sciences et Technologie, Université Paris-Est, Créteil, 61 Avenue du Général de Gaulle, FR-94010 Créteil Cedex, France
| | | | | |
Collapse
|
13
|
Guo H, Ramakrishnan S, Harden JL, Leheny RL. Gel formation and aging in weakly attractive nanocolloid suspensions at intermediate concentrations. J Chem Phys 2011; 135:154903. [DOI: 10.1063/1.3653380] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Germain P. Effect of residual attractive interactions in size asymmetric colloidal mixtures: Theoretical analysis and predictions. J Chem Phys 2010; 133:044905. [DOI: 10.1063/1.3456734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|