1
|
Burns D, Provatas N, Grant M. Phase field crystal models with applications to laser deposition: A review. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:014101. [PMID: 38361660 PMCID: PMC10869171 DOI: 10.1063/4.0000226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
In this article, we address the application of phase field crystal (PFC) theory, a hybrid atomistic-continuum approach, for modeling nanostructure kinetics encountered in laser deposition. We first provide an overview of the PFC methodology, highlighting recent advances to incorporate phononic and heat transport mechanisms. To simulate laser heating, energy is deposited onto a number of polycrystalline, two-dimensional samples through the application of initial stochastic fluctuations. We first demonstrate the ability of the model to simulate plasticity and recrystallization events that follow laser heating in the isothermal limit. Importantly, we also show that sufficient kinetic energy can cause voiding, which serves to suppress shock propagation. We subsequently employ a newly developed thermo-density PFC theory, coined thermal field crystal (TFC), to investigate laser heating of polycrystalline samples under non-isothermal conditions. We observe that the latent heat of transition associated with ordering can lead to long lasting metastable structures and defects, with a healing rate linked to the thermal diffusion. Finally, we illustrate that the lattice temperature simulated by the TFC model is in qualitative agreement with predictions of conventional electron-phonon two-temperature models. We expect that our new TFC formalism can be useful for predicting transient structures that result from rapid laser heating and re-solidification processes.
Collapse
Affiliation(s)
- Duncan Burns
- Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
| | - Nikolas Provatas
- Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
| | - Martin Grant
- Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
| |
Collapse
|
2
|
Ankudinov V, Galenko PK. Structure diagram and dynamics of formation of hexagonal boron nitride in phase-field crystal model. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200318. [PMID: 34974729 DOI: 10.1098/rsta.2020.0318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/21/2021] [Indexed: 06/14/2023]
Abstract
The phase-field crystal (PFC-model) is a powerful tool for modelling of the crystallization in colloidal and metallic systems. In the present work, the modified hyperbolic phase-field crystal model for binary systems is presented. This model takes into account slow and fast dynamics of moving interfaces for both concentration and relative atomic number density (which were taken as order parameters). The model also includes specific mobilities for each dynamical field and correlated noise terms. The dynamics of chemical segregation with origination of mixed pseudo-hexagonal binary phase (the so-called 'triangle phase') is used as a benchmark in two spatial dimensions for the developing model. Using the free energy functional and specific lattice vectors for hexagonal crystal, the structure diagram of co-existence of liquid and three-dimensional hexagonal phase for the binary PFC-model was carried out. Parameters of the crystal lattice correspond to the hexagonal boron nitride (BN) crystal, the values of which have been taken from the literature. The paper shows the qualitative agreement between the developed structure diagram of the PFC model and the previously known equilibrium diagram for BN constructed using thermodynamic functions. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.
Collapse
Affiliation(s)
- V Ankudinov
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, 108840 Moscow (Troitsk), Russia
- Institute of Mathematics, Informatics and Physics, Condensed Matter Physics Lab, Udmurt State University, Izhevsk, Russia
| | - P K Galenko
- Physikalish-Astronomische Fakultät, Otto-Schott-Institut für Materialforschung, Löbdergraben 32, 07743 Jena, Germany
- Laboratory of Multi-scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, 620000 Ekaterinburg, Russia
| |
Collapse
|
3
|
Solidification of Undercooled Liquid under Supergravity Field by Phase-Field Crystal Approach. METALS 2022. [DOI: 10.3390/met12020232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Solidification under a supergravity field is an effective method to control the solidified microstructure, which can be used to prepare materials with excellent comprehensive properties. In order to explore the influence of supergravity on the solidification behavior, a phase-field crystal model for the solidification under supergravity fields is developed and utilized to study the supergravity-controlled solidification behaviors. The results show that the grains in the solidification structures are refined in a supergravity field. The grain size in a zero-gravity field is uniformly distributed in the sample, but gradually decreases along the direction of the supergravity, showing a graded microstructure. The simulations show real-time images of the nucleation and growth of grains during solidification. In a supergravity field, solidification occurs preferentially in the liquid subject to greater gravity and advances in the opposite direction of supergravity with the time evolution. In addition, the driving force of crystallization in liquid is calculated to explain the effect of the supergravity field on the solidification structure from a thermodynamic point of view. Our findings are expected to provide a new approach and insight for understanding the solidification behaviors under supergravity.
Collapse
|
4
|
Salvalaglio M, Voigt A, Huang ZF, Elder KR. Mesoscale Defect Motion in Binary Systems: Effects of Compositional Strain and Cottrell Atmospheres. PHYSICAL REVIEW LETTERS 2021; 126:185502. [PMID: 34018767 DOI: 10.1103/physrevlett.126.185502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The velocity of dislocations is derived analytically to incorporate and predict the intriguing effects induced by the preferential solute segregation and Cottrell atmospheres in both two-dimensional and three-dimensional binary systems of various crystalline symmetries. The corresponding mesoscopic description of defect dynamics is constructed through the amplitude formulation of the phase-field crystal model, which has been shown to accurately capture elasticity and plasticity in a wide variety of systems. Modifications of the Peach-Koehler force as a result of solute concentration variations and compositional stresses are presented, leading to interesting new predictions of defect motion due to effects of Cottrell atmospheres. These include the deflection of dislocation glide paths, the variation of climb speed and direction, and the change or prevention of defect annihilation, all of which play an important role in determining the fundamental behaviors of complex defect network and dynamics. The analytic results are verified by numerical simulations.
Collapse
Affiliation(s)
- Marco Salvalaglio
- Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
- Dresden Center for Computational Materials Science, TU Dresden, 01062 Dresden, Germany
| | - Axel Voigt
- Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
- Dresden Center for Computational Materials Science, TU Dresden, 01062 Dresden, Germany
| | - Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| | - Ken R Elder
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| |
Collapse
|
5
|
Ankudinov V, Elder KR, Galenko PK. Traveling waves of the solidification and melting of cubic crystal lattices. Phys Rev E 2020; 102:062802. [PMID: 33466054 DOI: 10.1103/physreve.102.062802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 11/07/2022]
Abstract
Using the phase field crystal model (PFC model), an analysis of slow and fast dynamics of solid-liquid interfaces in solidification and melting processes is presented. Dynamical regimes for cubic lattices invading metastable liquids (solidification) and liquids propagating into metastable crystals (melting) are described in terms of the evolving amplitudes of the density field. Dynamical equations are obtained for body-centered cubic (bcc) and face-centered cubic (fcc) crystal lattices in one- and two-mode approximations. A universal form of the amplitude equations is obtained for the three-dimensional dynamics for different crystal lattices and crystallographic directions. Dynamics of the amplitude's propagation for different lattices and PFC mode's approximations is qualitatively compared. The traveling-wave velocity is quantitatively compared with data of molecular dynamics simulation previously obtained by Mendelev et al. [Modell. Simul. Mater. Sci. Eng. 18, 074002 (2010)MSMEEU0965-039310.1088/0965-0393/18/7/074002] for solidification and melting of the aluminum fcc lattice.
Collapse
Affiliation(s)
- V Ankudinov
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, 108840 Moscow (Troitsk), Russia
| | - K R Elder
- Department of Physics, Oakland University, Rochester, Michigan 48309-4487, USA
| | - P K Galenko
- Friedrich Schiller University of Jena, Faculty of Physics and Astronomy, Otto Schott Institute of Materials Research, 07743 Jena, Germany.,Ural Federal University, Theoretical and Mathematical Physics Department, Laboratory of Multi-Scale Mathematical Modeling, 620000 Ekaterinburg, Russia
| |
Collapse
|
6
|
Berčič M, Kugler G. Enabling simulations of grains within a full rotation range in amplitude expansion of the phase-field crystal model. Phys Rev E 2020; 101:043309. [PMID: 32422745 DOI: 10.1103/physreve.101.043309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/26/2020] [Indexed: 11/07/2022]
Abstract
This paper introduces improvements to the amplitude expansion of the phase-field crystal model that enable the simulation of grains within a full range of orientations. The unphysical grain boundary between grains, rotated by a crystal's symmetry rotation, is removed using a combination of the auxiliary rotation field described in our previous work and an algorithm that correctly matches the complex amplitudes according to the differences in local rotation.
Collapse
Affiliation(s)
- Matjaž Berčič
- University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Materials and Metallurgy, Ljubljana, Slovenia
| | - Goran Kugler
- University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Materials and Metallurgy, Ljubljana, Slovenia
| |
Collapse
|
7
|
Nizovtseva IG, Galenko PK. Travelling-wave amplitudes as solutions of the phase-field crystal equation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0202. [PMID: 29311201 PMCID: PMC5784093 DOI: 10.1098/rsta.2017.0202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/11/2017] [Indexed: 05/25/2023]
Abstract
The dynamics of the diffuse interface between liquid and solid states is analysed. The diffuse interface is considered as an envelope of atomic density amplitudes as predicted by the phase-field crystal model (Elder et al. 2004 Phys. Rev. E70, 051605 (doi:10.1103/PhysRevE.70.051605); Elder et al. 2007 Phys. Rev. B75, 064107 (doi:10.1103/PhysRevB.75.064107)). The propagation of crystalline amplitudes into metastable liquid is described by the hyperbolic equation of an extended Allen-Cahn type (Galenko & Jou 2005 Phys. Rev. E71, 046125 (doi:10.1103/PhysRevE.71.046125)) for which the complete set of analytical travelling-wave solutions is obtained by the [Formula: see text] method (Malfliet & Hereman 1996 Phys. Scr.15, 563-568 (doi:10.1088/0031-8949/54/6/003); Wazwaz 2004 Appl. Math. Comput.154, 713-723 (doi:10.1016/S0096-3003(03)00745-8)). The general [Formula: see text] solution of travelling waves is based on the function of hyperbolic tangent. Together with its set of particular solutions, the general [Formula: see text] solution is analysed within an example of specific task about the crystal front invading metastable liquid (Galenko et al. 2015 Phys. D308, 1-10 (doi:10.1016/j.physd.2015.06.002)). The influence of the driving force on the phase-field profile, amplitude velocity and correlation length is investigated for various relaxation times of the gradient flow.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.
Collapse
Affiliation(s)
- I G Nizovtseva
- Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
- Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - P K Galenko
- Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
- Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| |
Collapse
|
8
|
Salvalaglio M, Backofen R, Voigt A, Elder KR. Controlling the energy of defects and interfaces in the amplitude expansion of the phase-field crystal model. Phys Rev E 2017; 96:023301. [PMID: 28950454 DOI: 10.1103/physreve.96.023301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Indexed: 06/07/2023]
Abstract
One of the major difficulties in employing phase-field crystal (PFC) modeling and the associated amplitude (APFC) formulation is the ability to tune model parameters to match experimental quantities. In this work, we address the problem of tuning the defect core and interface energies in the APFC formulation. We show that the addition of a single term to the free-energy functional can be used to increase the solid-liquid interface and defect energies in a well-controlled fashion, without any major change to other features. The influence of the newly added term is explored in two-dimensional triangular and honeycomb structures as well as bcc and fcc lattices in three dimensions. In addition, a finite-element method (FEM) is developed for the model that incorporates a mesh refinement scheme. The combination of the FEM and mesh refinement to simulate amplitude expansion with a new energy term provides a method of controlling microscopic features such as defect and interface energies while simultaneously delivering a coarse-grained examination of the system.
Collapse
Affiliation(s)
- Marco Salvalaglio
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
| | - Rainer Backofen
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
| | - Axel Voigt
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany
| | - Ken R Elder
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| |
Collapse
|
9
|
Alster E, Elder KR, Hoyt JJ, Voorhees PW. Phase-field-crystal model for ordered crystals. Phys Rev E 2017; 95:022105. [PMID: 28297840 DOI: 10.1103/physreve.95.022105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Indexed: 05/11/2023]
Abstract
We describe a general method to model multicomponent ordered crystals using the phase-field-crystal (PFC) formalism. As a test case, a generic B2 compound is investigated. We are able to produce a line of either first-order or second-order order-disorder phase transitions, features that have not been incorporated in existing PFC approaches. Further, it is found that the only elastic constant for B2 that depends on ordering is C_{11}. This B2 model is then used to study antiphase boundaries (APBs). The APBs are shown to reproduce classical mean-field results. Dynamical simulations of ordering across small-angle grain boundaries predict that dislocation cores pin the evolution of APBs.
Collapse
Affiliation(s)
- Eli Alster
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - K R Elder
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - Jeffrey J Hoyt
- Department of Materials Science and Engineering and Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada L8S-4L7
| | - Peter W Voorhees
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
10
|
Elder KR, Chen Z, Elder KLM, Hirvonen P, Mkhonta SK, Ying SC, Granato E, Huang ZF, Ala-Nissila T. Honeycomb and triangular domain wall networks in heteroepitaxial systems. J Chem Phys 2016; 144:174703. [PMID: 27155643 DOI: 10.1063/1.4948370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A comprehensive study is presented for the influence of misfit strain, adhesion strength, and lattice symmetry on the complex Moiré patterns that form in ultrathin films of honeycomb symmetry adsorbed on compact triangular or honeycomb substrates. The method used is based on a complex Ginzburg-Landau model of the film that incorporates elastic strain energy and dislocations. The results indicate that different symmetries of the heteroepitaxial systems lead to distinct types of domain wall networks and phase transitions among various surface Moiré patterns and superstructures. More specifically, the results show a dramatic difference between the phase diagrams that emerge when a honeycomb film is adsorbed on substrates of honeycomb versus triangular symmetry. It is also shown that in the small deformation limit, the complex Ginzburg-Landau model reduces to a two-dimensional sine-Gordon free energy form. This free energy can be solved exactly for one dimensional patterns and reveals the role of domains walls and their crossings in determining the nature of the phase diagrams.
Collapse
Affiliation(s)
- K R Elder
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - Z Chen
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - K L M Elder
- Department of Applied Physics and COMP Centre of Excellence, Aalto University School of Science, P.O. Box 11000, FI-00076 Aalto, Finland
| | - P Hirvonen
- Department of Applied Physics and COMP Centre of Excellence, Aalto University School of Science, P.O. Box 11000, FI-00076 Aalto, Finland
| | - S K Mkhonta
- Department of Physics, University of Swaziland, Private Bag 4, Kwaluseni, Swaziland
| | - S-C Ying
- Department of Physics, Brown University, P.O. Box 1843, Providence, Rhode Island 02912, USA
| | - E Granato
- Department of Physics, Brown University, P.O. Box 1843, Providence, Rhode Island 02912, USA
| | - Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| | - T Ala-Nissila
- Department of Applied Physics and COMP Centre of Excellence, Aalto University School of Science, P.O. Box 11000, FI-00076 Aalto, Finland
| |
Collapse
|
11
|
Huang ZF. Scaling of alloy interfacial properties under compositional strain. Phys Rev E 2016; 93:022803. [PMID: 26986390 DOI: 10.1103/physreve.93.022803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Indexed: 11/07/2022]
Abstract
Complex morphologies and microstructures that emerge during materials growth and solidification are often determined by both equilibrium and kinetic properties of the interface and their crystalline anisotropies. However, limited knowledge is available on alloying and, particularly, compositionally generated elastic effects on these interface characteristics. Here we systematically investigate such compositional effects on the interfacial properties of an alloy model system based on a phase-field-crystal analysis, including the solid-liquid interfacial free energy, kinetic coefficient, and lattice pinning strength. Scaling relations for these interfacial quantities over various ranges of material parameters are identified and predicted. Our results indicate the important effects of couplings among mesoscopic and microscopic length scales of alloy structure and concentration, and the influence of compressive and tensile interface stresses induced by composition variations. The approach developed here provides an efficient way to systematically identify these key material properties beyond the traditional atomistic and continuum methods.
Collapse
Affiliation(s)
- Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
12
|
Heinonen V, Achim CV, Elder KR, Buyukdagli S, Ala-Nissila T. Phase-field-crystal models and mechanical equilibrium. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032411. [PMID: 24730856 DOI: 10.1103/physreve.89.032411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Indexed: 05/11/2023]
Abstract
Phase-field-crystal (PFC) models constitute a field theoretical approach to solidification, melting, and related phenomena at atomic length and diffusive time scales. One of the advantages of these models is that they naturally contain elastic excitations associated with strain in crystalline bodies. However, instabilities that are diffusively driven towards equilibrium are often orders of magnitude slower than the dynamics of the elastic excitations, and are thus not included in the standard PFC model dynamics. We derive a method to isolate the time evolution of the elastic excitations from the diffusive dynamics in the PFC approach and set up a two-stage process, in which elastic excitations are equilibrated separately. This ensures mechanical equilibrium at all times. We show concrete examples demonstrating the necessity of the separation of the elastic and diffusive time scales. In the small-deformation limit this approach is shown to agree with the theory of linear elasticity.
Collapse
Affiliation(s)
- V Heinonen
- COMP Centre of Excellence at the Department of Applied Physics, Aalto University, School of Science, P. O. Box 11100, FI-00076 Aalto, Finland
| | - C V Achim
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - K R Elder
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - S Buyukdagli
- COMP Centre of Excellence at the Department of Applied Physics, Aalto University, School of Science, P. O. Box 11100, FI-00076 Aalto, Finland
| | - T Ala-Nissila
- COMP Centre of Excellence at the Department of Applied Physics, Aalto University, School of Science, P. O. Box 11100, FI-00076 Aalto, Finland and Department of Physics, Brown University, Providence, Rhode Island 02912-1843, USA
| |
Collapse
|
13
|
Faghihi N, Provatas N, Elder KR, Grant M, Karttunen M. Phase-field-crystal model for magnetocrystalline interactions in isotropic ferromagnetic solids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:032407. [PMID: 24125276 DOI: 10.1103/physreve.88.032407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Indexed: 06/02/2023]
Abstract
An isotropic magnetoelastic phase-field-crystal model to study the relation between morphological structure and magnetic properties of pure ferromagnetic solids is introduced. Analytic calculations in two dimensions were used to determine the phase diagram and obtain the relationship between elastic strains and magnetization. Time-dependent numerical simulations in two dimensions were used to demonstrate the effect of grain boundaries on the formation of magnetic domains. It was shown that the grain boundaries act as nucleating sites for domains of reverse magnetization. Finally, we derive a relation for coercivity versus grain misorientation in the isotropic limit.
Collapse
Affiliation(s)
- Niloufar Faghihi
- Department of Applied Mathematics, The University of Western Ontario, 1151 Richmond St. N., London, Ontario, Canada N6A 5B7 and Department of Physics, McGill University, 3600 rue University, Montréal, Québec, Canada H3A 2T8
| | | | | | | | | |
Collapse
|
14
|
Schwalbach EJ, Warren JA, Wu KA, Voorhees PW. Phase-field crystal model with a vapor phase. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:023306. [PMID: 24032965 DOI: 10.1103/physreve.88.023306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Indexed: 06/02/2023]
Abstract
Phase-field crystal (PFC) models are able to resolve atomic length scale features of materials during temporal evolution over diffusive time scales. Traditional PFC models contain solid and liquid phases, however many important materials processing phenomena involve a vapor phase as well. In this work, we add a vapor phase to an existing PFC model and show realistic interfacial phenomena near the triple point temperature. For example, the PFC model exhibits density oscillations at liquid-vapor interfaces that compare favorably to data available for interfaces in metallic systems from both experiment and molecular-dynamics simulations. We also quantify the anisotropic solid-vapor surface energy for a two-dimensional PFC hexagonal crystal and find well-defined step energies from measurements on the faceted interfaces. Additionally, the strain field beneath a stepped interface is characterized and shown to qualitatively reproduce predictions from continuum models, simulations, and experimental data. Finally, we examine the dynamic case of step-flow growth of a crystal into a supersaturated vapor phase. The ability to model such a wide range of surface and bulk defects makes this PFC model a useful tool to study processing techniques such as chemical vapor deposition or vapor-liquid-solid growth of nanowires.
Collapse
Affiliation(s)
- Edwin J Schwalbach
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | | | | | |
Collapse
|
15
|
Gamage CG, Huang ZF. Nonlinear dynamics of island coarsening and stabilization during strained film heteroepitaxy. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022408. [PMID: 23496527 DOI: 10.1103/physreve.87.022408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Indexed: 06/01/2023]
Abstract
Nonlinear evolution of three-dimensional strained islands or quantum dots in heteroepitaxial thin films is studied via a continuum elasticity model and both perturbation analysis of the system and numerical simulations of the corresponding nonlinear dynamic equation governing the film morphological profile. Three regimes of island array evolution are identified and examined, including a film instability regime at early stage, a nonlinear coarsening regime at intermediate times, and the crossover to a saturated asymptotic state, with detailed behavior depending on film-substrate misfit strains but not qualitatively on finite system sizes. The phenomenon of island array stabilization, which corresponds to the formation of steady but nonordered arrays of strained quantum dots, occurs at later time for smaller misfit strain. It is found to be controlled by the strength of film-substrate wetting interaction which would constrain the valley-to-peak mass transport and hence the growth of island height, and also determined by the effect of elastic interaction between surface islands and the high-order strain energy of individual islands at late evolution stage. The results are compared to previous experimental and theoretical studies on quantum dot coarsening and stabilization.
Collapse
Affiliation(s)
- Champika G Gamage
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
16
|
Humadi H, Hoyt JJ, Provatas N. Phase-field-crystal study of solute trapping. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022404. [PMID: 23496523 DOI: 10.1103/physreve.87.022404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Indexed: 06/01/2023]
Abstract
In this study we have incorporated two time scales into the phase-field-crystal model of a binary alloy to explore different solute trapping properties as a function of crystal-melt interface velocity. With only diffusive dynamics, we demonstrate that the segregation coefficient, K as a function of velocity for a binary alloy is consistent with the model of Kaplan and Aziz where K approaches unity in the limit of infinite velocity. However, with the introduction of wavelike dynamics in both the density and concentration fields, the trapping follows the kinetics proposed by Sobolev [Phys. Lett. A 199, 383 (1995)], where complete trapping occurs at a finite velocity.
Collapse
Affiliation(s)
- Harith Humadi
- Department of Materials Science and Engineering and Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Canada L8S-4L7
| | | | | |
Collapse
|
17
|
Huang ZF. Scale-coupling and interface-pinning effects in the phase-field-crystal model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012401. [PMID: 23410338 DOI: 10.1103/physreve.87.012401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/17/2012] [Indexed: 06/01/2023]
Abstract
Effects of scale coupling between mesoscopic slowly varying envelopes of liquid-solid profile and the underlying microscopic crystalline structure are studied in the phase-field-crystal (PFC) model. Such scale coupling leads to nonadiabatic corrections to the PFC amplitude equations, the effect of which increases strongly with decreasing system temperature below the melting point. This nonadiabatic amplitude representation is further coarse-grained for the derivation of effective sharp-interface equations of motion in the limit of small but finite interface thickness. We identify a generalized form of the Gibbs-Thomson relation with the incorporation of coupling and pinning effects of the crystalline lattice structure. This generalized interface equation can be reduced to the form of a driven sine-Gordon equation with Kardar-Parisi-Zhang (KPZ) nonlinearity, and can be combined with two other dynamic equations in the sharp interface limit obeying the conservation condition of atomic number density in a liquid-solid system. A sample application to the study of crystal layer growth is given, and the corresponding analytic solutions showing lattice pinning and depinning effects and two distinct modes of continuous vs nucleated growth are presented. We also identify the universal scaling behaviors governing the properties of pinning strength, surface tension, interface kinetic coefficient, and activation energy of atomic layer growth, which accommodate all range of liquid-solid interface thicknesses and different material elastic moduli.
Collapse
Affiliation(s)
- Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
18
|
Elder KR, Rossi G, Kanerva P, Sanches F, Ying SC, Granato E, Achim CV, Ala-Nissila T. Patterning of heteroepitaxial overlayers from nano to micron scales. PHYSICAL REVIEW LETTERS 2012; 108:226102. [PMID: 23003626 DOI: 10.1103/physrevlett.108.226102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Indexed: 05/11/2023]
Abstract
Thin heteroepitaxial overlayers have been proposed as templates to generate stable, self-organized nanostructures at large length scales, with a variety of important technological applications. However, modeling strain-driven self-organization is a formidable challenge due to different length scales involved. In this Letter, we present a method for predicting the patterning of ultrathin films on micron length scales with atomic resolution. We make quantitative predictions for the type of superstructures (stripes, honeycomb, triangular) and length scale of pattern formation of two metal-metal systems, Cu on Ru(0001) and Cu on Pd(111). Our findings are in excellent agreement with previous experiments and call for future experimental investigations of such systems.
Collapse
Affiliation(s)
- K R Elder
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Provatas N, Majaniemi S. Phase-field-crystal calculation of crystal-melt surface tension in binary alloys. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:041601. [PMID: 21230281 DOI: 10.1103/physreve.82.041601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Indexed: 05/30/2023]
Abstract
A phase field crystal (PFC) density functional for binary mixtures is coarse grained and a formalism for calculating the simultaneous concentration, temperature, and density dependence of the surface energy anisotropy of a solid-liquid interface is developed. The methodology systematically relates bulk free energy coefficients arising from coarse graining to thermodynamic data, while gradient energy coefficients are related to molecular properties. Our coarse-grained formalism is applied to the determination of surface energy anisotropy in two-dimensional Zn-Al films, a situation relevant for quantitative phase field simulations of dendritic solidification in zinc coatings.
Collapse
Affiliation(s)
- Nikolas Provatas
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7.
| | | |
Collapse
|
20
|
Muralidharan S, Haataja M. Phase-field crystal modeling of compositional domain formation in ultrathin films. PHYSICAL REVIEW LETTERS 2010; 105:126101. [PMID: 20867659 DOI: 10.1103/physrevlett.105.126101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Indexed: 05/29/2023]
Abstract
Bulk-immiscible binary systems often form stress-induced miscible alloy phases when deposited on a substrate. Both alloying and surface dislocation formation lead to the decrease of the elastic strain energy, and the competition between these two strain-relaxation mechanisms gives rise to the emergence of pseudomorphic compositional nanoscale domains, often coexisting with a partially coherent single phase. In this work, we develop a phase-field crystal model for compositional patterning in monolayer aggregates of binary metallic systems. We first demonstrate that the model naturally incorporates the competition between alloying and misfit dislocations, and quantify the effects of misfit and line tension on equilibrium domain size. Then, we quantitatively relate the parameters of the phase-field crystal model to a specific system, CoAg/Ru(0001), and demonstrate that the simulations capture experimentally observed morphologies.
Collapse
Affiliation(s)
- Srevatsan Muralidharan
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|
21
|
Elder KR, Huang ZF. A phase field crystal study of epitaxial island formation on nanomembranes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:364103. [PMID: 21386519 DOI: 10.1088/0953-8984/22/36/364103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this paper the liquid phase heteroepitaxial growth of two-dimensional strained islands on nanomembranes is examined via an amplitude expansion of a binary phase field crystal model. The maximum size that the islands can grow to coherently is shown to be strongly dependent on the nanomembrane thickness and to a lesser extent on the flux rate. For a large membrane-island misfit of about 10%, islands were found to be able to grow coherently with the membrane to almost twice as large as those grown on thick membranes (or infinite substrates). It was also found that when islands are growing on both sides of the membrane, strain relaxation in the membrane leads to more and less favorable growth regions. For thinner membranes this effect increases the degree of ordering of the islands, a result consistent with recent experimental findings.
Collapse
Affiliation(s)
- K R Elder
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | | |
Collapse
|
22
|
Huang ZF, Elder KR, Provatas N. Phase-field-crystal dynamics for binary systems: Derivation from dynamical density functional theory, amplitude equation formalism, and applications to alloy heterostructures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:021605. [PMID: 20866824 DOI: 10.1103/physreve.82.021605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Indexed: 05/11/2023]
Abstract
The dynamics of phase field crystal (PFC) modeling is derived from dynamical density functional theory (DDFT), for both single-component and binary systems. The derivation is based on a truncation up to the three-point direct correlation functions in DDFT, and the lowest order approximation using scale analysis. The complete amplitude equation formalism for binary PFC is developed to describe the coupled dynamics of slowly varying complex amplitudes of structural profile, zeroth-mode average atomic density, and system concentration field. Effects of noise (corresponding to stochastic amplitude equations) and species-dependent atomic mobilities are also incorporated in this formalism. Results of a sample application to the study of surface segregation and interface intermixing in alloy heterostructures and strained layer growth are presented, showing the effects of different atomic sizes and mobilities of alloy components. A phenomenon of composition overshooting at the interface is found, which can be connected to the surface segregation and enrichment of one of the atomic components observed in recent experiments of alloying heterostructures.
Collapse
Affiliation(s)
- Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|