1
|
Abbasi Moud A, Abbasi Moud A. Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review. Int J Biol Macromol 2023; 232:123391. [PMID: 36716841 DOI: 10.1016/j.ijbiomac.2023.123391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Cellulosic sources, such as lignocellulose-rich biomass, can be mechanically or acid degraded to produce inclusions called cellulose nanocrystals (CNCs). They have several uses in the sectors of biomedicine, photonics, and material engineering because of their biodegradability, renewability, sustainability, and mechanical qualities. The processing and design of CNC-based products are inextricably linked to the rheological behaviour of CNC suspension or in combination with other chemicals, such as surfactants or polymers; in this context, rheology offers a significant link between microstructure and macro scale flow behaviour that is intricately linked to material response in applications. The flow behaviour of CNC items must be properly specified in order to produce goods with value-added characteristics. In this review article, we provide new research on the shear rheology of CNC dispersion and CNC-based hydrogels in the linear and nonlinear regime, with storage modulus values reported to range from ~10-3 to 103 Pa. Applications in technology and material science are also covered simultaneously. We carefully examined the effects of charge density, aspect ratio, concentration, persistence length, alignment, liquid crystal formation, the cause of chirality in CNCs, interfacial behaviour and interfacial rheology, linear and nonlinear viscoelasticity of CNC suspension in bulk and at the interface using the currently available literature.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran.
| | - Aliyeh Abbasi Moud
- Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran
| |
Collapse
|
2
|
Guzmán E, Martínez-Pedrero F, Calero C, Maestro A, Ortega F, Rubio RG. A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Adv Colloid Interface Sci 2022; 302:102620. [PMID: 35259565 DOI: 10.1016/j.cis.2022.102620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023]
Abstract
Particles adsorbed to fluid interfaces are ubiquitous in industry, nature or life. The wide range of properties arising from the assembly of particles at fluid interface has stimulated an intense research activity on shed light to the most fundamental physico-chemical aspects of these systems. These include the mechanisms driving the equilibration of the interfacial layers, trapping energy, specific inter-particle interactions and the response of the particle-laden interface to mechanical perturbations and flows. The understanding of the physico-chemistry of particle-laden interfaces becomes essential for taking advantage of the particle capacity to stabilize interfaces for the preparation of different dispersed systems (emulsions, foams or colloidosomes) and the fabrication of new reconfigurable interface-dominated devices. This review presents a detailed overview of the physico-chemical aspects that determine the behavior of particles trapped at fluid interfaces. This has been combined with some examples of real and potential applications of these systems in technological and industrial fields. It is expected that this information can provide a general perspective of the topic that can be exploited for researchers and technologist non-specialized in the study of particle-laden interfaces, or for experienced researcher seeking new questions to solve.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| | - Fernando Martínez-Pedrero
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Carles Calero
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Avenida Diagonal 647, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia, IN2UB, Universitat de Barcelona, Avenida, Diagonal 647, 08028 Barcelona, Spain
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU)-Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| |
Collapse
|
3
|
Tsibranska S, Ivanova A, Tcholakova S, Denkov N. Structure and Undulations of Escin Adsorption Layer at Water Surface Studied by Molecular Dynamics. Molecules 2021; 26:6856. [PMID: 34833947 PMCID: PMC8618613 DOI: 10.3390/molecules26226856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
The saponin escin, extracted from horse chestnut seeds, forms adsorption layers with high viscoelasticity and low gas permeability. Upon deformation, escin adsorption layers often feature surface wrinkles with characteristic wavelength. In previous studies, we investigated the origin of this behavior and found that the substantial surface elasticity of escin layers may be related to a specific combination of short-, medium-, and long-range attractive forces, leading to tight molecular packing in the layers. In the current study, we performed atomistic molecular dynamics simulations of 441 escin molecules in a dense adsorption layer with an area per molecule of 0.49 nm2. We found that the surfactant molecules are less submerged in water and adopt a more upright position when compared to the characteristics determined in our previous simulations with much smaller molecular models. The number of neighbouring molecules and their local orientation, however, remain similar in the different-size models. To maintain their preferred mutual orientation, the escin molecules segregate into well-ordered domains and spontaneously form wrinkled layers. The same specific interactions (H-bonds, dipole-dipole attraction, and intermediate strong attraction) define the complex internal structure and the undulations of the layers. The analysis of the layer properties reveals a characteristic wrinkle wavelength related to the surface lateral dimensions, in qualitative agreement with the phenomenological description of thin elastic sheets.
Collapse
Affiliation(s)
- Sonya Tsibranska
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria; (S.T.); (S.T.); (N.D.)
| | - Anela Ivanova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria
| | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria; (S.T.); (S.T.); (N.D.)
| | - Nikolai Denkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria; (S.T.); (S.T.); (N.D.)
| |
Collapse
|
4
|
Guzmán E, Abelenda-Núñez I, Maestro A, Ortega F, Santamaria A, Rubio RG. Particle-laden fluid/fluid interfaces: physico-chemical foundations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:333001. [PMID: 34102618 DOI: 10.1088/1361-648x/ac0938] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Particle-laden fluid/fluid interfaces are ubiquitous in academia and industry, which has fostered extensive research efforts trying to disentangle the physico-chemical bases underlying the trapping of particles to fluid/fluid interfaces as well as the properties of the obtained layers. The understanding of such aspects is essential for exploiting the ability of particles on the stabilization of fluid/fluid interface for the fabrication of novel interface-dominated devices, ranging from traditional Pickering emulsions to more advanced reconfigurable devices. This review tries to provide a general perspective of the physico-chemical aspects associated with the stabilization of interfaces by colloidal particles, mainly chemical isotropic spherical colloids. Furthermore, some aspects related to the exploitation of particle-laden fluid/fluid interfaces on the stabilization of emulsions and foams will be also highlighted. It is expected that this review can be used for researchers and technologist as an initial approach to the study of particle-laden fluid layers.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Irene Abelenda-Núñez
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Francisco Ortega
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Andreas Santamaria
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Institut Laue-Langevin, Grenoble, France
| | - Ramón G Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Correia EL, Brown N, Razavi S. Janus Particles at Fluid Interfaces: Stability and Interfacial Rheology. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:374. [PMID: 33540620 PMCID: PMC7913064 DOI: 10.3390/nano11020374] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
The use of the Janus motif in colloidal particles, i.e., anisotropic surface properties on opposite faces, has gained significant attention in the bottom-up assembly of novel functional structures, design of active nanomotors, biological sensing and imaging, and polymer blend compatibilization. This review is focused on the behavior of Janus particles in interfacial systems, such as particle-stabilized (i.e., Pickering) emulsions and foams, where stabilization is achieved through the binding of particles to fluid interfaces. In many such applications, the interface could be subjected to deformations, producing compression and shear stresses. Besides the physicochemical properties of the particle, their behavior under flow will also impact the performance of the resulting system. This review article provides a synopsis of interfacial stability and rheology in particle-laden interfaces to highlight the role of the Janus motif, and how particle anisotropy affects interfacial mechanics.
Collapse
Affiliation(s)
| | | | - Sepideh Razavi
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, 100 E. Boyd Street, Norman, OK 73019, USA; (E.L.C.); (N.B.)
| |
Collapse
|
6
|
Ji X, Wang X, Zhang Y, Zang D. Interfacial viscoelasticity and jamming of colloidal particles at fluid-fluid interfaces: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:126601. [PMID: 32998118 DOI: 10.1088/1361-6633/abbcd8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal particles can be adsorbed at fluid-fluid interfaces, a phenomenon frequently observed in particle-stabilized foams, Pickering emulsions, and bijels. Particles adsorbed at interfaces exhibit unique physical and chemical behaviors, which affect the mechanical properties of the interface. Therefore, interfacial colloidal particles are of interest in terms of both fundamental and applied research. In this paper, we review studies on the adsorption of colloidal particles at fluid-fluid interfaces, from both thermodynamic and mechanical points of view, and discuss the differences as compared with surfactants and polymers. The unique particle interactions induced by the interfaces as well as the particle dynamics including lateral diffusion and contact line relaxation will be presented. We focus on the rearrangement of the particles and the resultant interfacial viscoelasticity. Particular emphasis will be given to the effects of particle shape, size, and surface hydrophobicity on the interfacial particle assembly and the mechanical properties of the obtained particle layer. We will also summarize recent advances in interfacial jamming behavior caused by adsorption of particles at interfaces. The buckling and cracking behavior of particle layers will be discussed from a mechanical perspective. Finally, we suggest several potential directions for future research in this area.
Collapse
Affiliation(s)
- Xiaoliang Ji
- Soft Matter & Complex Fluids Group, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| | - Xiaolu Wang
- Institute of Welding and Surface Engineering Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Yongjian Zhang
- Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, Xi'an University, Xi'an 710065, People's Republic of China
| | - Duyang Zang
- Soft Matter & Complex Fluids Group, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| |
Collapse
|
7
|
Toor A, Forth J, Bochner de Araujo S, Merola MC, Jiang Y, Liu X, Chai Y, Hou H, Ashby PD, Fuller GG, Russell TP. Mechanical Properties of Solidifying Assemblies of Nanoparticle Surfactants at the Oil-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13340-13350. [PMID: 31536356 DOI: 10.1021/acs.langmuir.9b01575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effect of polymer surfactant structure and concentration on the self-assembly, mechanical properties, and solidification of nanoparticle surfactants (NPSs) at the oil-water interface was studied. The surface tension of the oil-water interface was found to depend strongly on the choice of the polymer surfactant used to assemble the NPSs, with polymer surfactants bearing multiple polar groups being the most effective at reducing interfacial tension and driving the NPS assembly. By contrast, only small variations in the shear modulus of the system were observed, suggesting that it is determined largely by particle density. In the presence of polymer surfactants bearing multiple functional groups, NPS assemblies on pendant drop surfaces were observed to spontaneously solidify above a critical polymer surfactant concentration. Interfacial solidification accelerated rapidly as polymer surfactant concentration was increased. On long timescales after solidification, pendant drop interfaces were observed to spontaneously wrinkle at sufficiently low surface tensions (approximately 5 mN m-1). Interfacial shear rheology of the NPS assemblies was elastic-dominated, with the shear modulus ranging from 0.1 to 1 N m-1, comparable to values obtained for nanoparticle monolayers elsewhere. Our work paves the way for the development of designer, multicomponent oil-water interfaces with well-defined mechanical, structural, and functional properties.
Collapse
Affiliation(s)
- Anju Toor
- Department of Mechanical Engineering , University of California , 6141 Etcheverry Hall , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Joe Forth
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Simone Bochner de Araujo
- Department of Chemical Engineering , Stanford University , 443 Via Ortega , Stanford , California 94305 , United States
| | - Maria Consiglia Merola
- Department of Chemical Engineering , Stanford University , 443 Via Ortega , Stanford , California 94305 , United States
| | - Yufeng Jiang
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
- Department of Applied Science and Technology , University of California , Berkeley , California 94720 , United States
| | - Xubo Liu
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yu Chai
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
- Department of Applied Science and Technology , University of California , Berkeley , California 94720 , United States
- The Molecular Foundry , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Honghao Hou
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Paul D Ashby
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
- The Molecular Foundry , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Gerald G Fuller
- Department of Chemical Engineering , Stanford University , 443 Via Ortega , Stanford , California 94305 , United States
| | - Thomas P Russell
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
- Polymer Science and Engineering Department , University of Massachusetts , 120 Governors Drive, Conte Center for Polymer Research , Amherst , Massachusetts 01003 , United States
- Advanced Institute for Materials Research (AIMR) , Tohoku University , 2-1-1 Katahira , Aoba, Sendai 980-8577 , Japan
| |
Collapse
|
8
|
Zhang Y, Yuan D, Ma H, Wang T, Zang D. Branching of interfacial cracks of carbon nanotube layers at the air-water interface ⋆. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:105. [PMID: 31414252 DOI: 10.1140/epje/i2019-11873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
We study the surfactant-induced fracture of carbon nanotube layers at the air-water interface. The interfacial cracks exhibit branched morphologies. The propagation velocity V of the cracks follows a power law as [Formula: see text] , which is independent of the surface coverage of the layers as well as the surfactant concentration. However, the crack morphology changes from lightning-like to flower-like with the increasing of SDS concentration. A higher surfactant concentration does not accelerate the crack propagation velocity, whereas it significantly enhances the crack areas due to the stronger interfacial compression effect. Our results may shed light on the understanding of branching dynamics of interfacial cracks for 2-dimensional viscoelastic systems.
Collapse
Affiliation(s)
- Yongjian Zhang
- Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, Xi'an University, 710065, Xi'an, China.
| | - Danna Yuan
- Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, Xi'an University, 710065, Xi'an, China
| | - Haoran Ma
- Functional Soft Matter & Materials Group, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Science, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Tao Wang
- Functional Soft Matter & Materials Group, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Science, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Duyang Zang
- Functional Soft Matter & Materials Group, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Science, Northwestern Polytechnical University, 710129, Xi'an, China.
| |
Collapse
|
9
|
Tran L, Haase MF. Templating Interfacial Nanoparticle Assemblies via in Situ Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8584-8602. [PMID: 30808166 DOI: 10.1021/acs.langmuir.9b00130] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In situ surface modification of nanoparticles has a rich industrial history, but in recent years, it has also received increased attention in the field of directed self-assembly. In situ techniques rely on components within a Pickering emulsion system, such as amphiphiles that act as hydrophobizers or ionic species that screen charges, to drive the interfacial assembly of particles. Instead of stepwise procedures to chemically tune the particle wettability, in situ methods use elements already present within the system to alter the nanoparticle interfacial behavior, often depending on Coulombic interactions to simplify operations. The surface modifications are not contingent on specific chemical reactions, which further enables a multitude of possible nanoparticles to be used within a given system. In recent studies, in situ methods have been combined with external means of shaping the interface to produce materials with high interfacial areas and complex geometries. These systems have facilely tunable properties, enabling their use in an extensive array of applications. In this feature article, in honor of the late Prof. Helmuth Möhwald, we review how in situ techniques have influenced the development of soft, advanced materials, covering the fundamental interfacial phenomena with an outlook on materials science.
Collapse
Affiliation(s)
- Lisa Tran
- Department of Chemical Engineering , Columbia University , New York , New York 10027 , United States
| | - Martin F Haase
- Department of Chemical Engineering , Rowan University , Glassboro , New Jersey 08028 , United States
| |
Collapse
|
10
|
Bertsch P, Fischer P. Interfacial Rheology of Charged Anisotropic Cellulose Nanocrystals at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7937-7943. [PMID: 31090427 DOI: 10.1021/acs.langmuir.9b00699] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cellulose nanocrystals (CNCs) have received attention as a biological alternative for the stabilization of fluid interfaces, yielding biocompatible and sustainable emulsions, foams, and aerogels. The interfacial behavior of nanoparticles with shape anisotropy and surface charge like CNCs is still poorly understood, although it ultimately dictates the mechanical properties and stability of the macroscopic colloidal material. Here, we report on the linear and nonlinear interfacial dilatational and shear rheology of CNCs at the air-water interface. We observed the formation of viscoelastic CNC layers at comparably low surface coverage, which was attributed to the shape anisotropy of CNCs. Further, the interfacial elasticity of CNC layers can be modulated by salt-induced charge screening, thereby shifting the interplay of repulsive and attractive CNC interactions. CNC layers had a viscous character without salt, followed by increasing viscoelasticity upon salt addition. CNC layers display strain hardening during compression and show a yield stress followed by flow under shear. The observed interfacial behavior is discussed in the context of CNC-stabilized foam and emulsion properties. We conclude that understanding the CNC interfacial behavior may help improve the performance of CNC-stabilized colloidal materials.
Collapse
Affiliation(s)
- Pascal Bertsch
- Institute of Food Nutrition and Health , ETH Zurich , 8092 Zurich , Switzerland
| | - Peter Fischer
- Institute of Food Nutrition and Health , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
11
|
Forth J, Kim PY, Xie G, Liu X, Helms BA, Russell TP. Building Reconfigurable Devices Using Complex Liquid-Fluid Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806370. [PMID: 30828869 DOI: 10.1002/adma.201806370] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Liquid-fluid interfaces provide a platform both for structuring liquids into complex shapes and assembling dimensionally confined, functional nanomaterials. Historically, attention in this area has focused on simple emulsions and foams, in which surface-active materials such as surfactants or colloids stabilize structures against coalescence and alter the mechanical properties of the interface. In recent decades, however, a growing body of work has begun to demonstrate the full potential of the assembly of nanomaterials at liquid-fluid interfaces to generate functionally advanced, biomimetic systems. Here, a broad overview is given, from fundamentals to applications, of the use of liquid-fluid interfaces to generate complex, all-liquid devices with a myriad of potential applications.
Collapse
Affiliation(s)
- Joe Forth
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ganhua Xie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Conte Center for Polymer Research, Amherst, MA, 01003, USA
| | - Xubo Liu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Conte Center for Polymer Research, Amherst, MA, 01003, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
12
|
Vishal B, Ghosh P. The effect of silica nanoparticles on the stability of aqueous foams. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1467771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Badri Vishal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Pallab Ghosh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
13
|
Maestro A. Tailoring the interfacial assembly of colloidal particles by engineering the mechanical properties of the interface. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Modifying interfacial interparticle forces to alter microstructure and viscoelasticity of densely packed particle laden interfaces. J Colloid Interface Sci 2019; 536:30-41. [DOI: 10.1016/j.jcis.2018.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 11/20/2022]
|
15
|
Yu K, Zhang H, Biggs S, Xu Z, Cayre OJ, Harbottle D. The rheology of polyvinylpyrrolidone-coated silica nanoparticles positioned at an air-aqueous interface. J Colloid Interface Sci 2018; 527:346-355. [DOI: 10.1016/j.jcis.2018.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
|
16
|
Maestro A, Santini E, Guzmán E. Physico-chemical foundations of particle-laden fluid interfaces. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:97. [PMID: 30141087 DOI: 10.1140/epje/i2018-11708-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Particle-laden interfaces are ubiquitous nowadays. The understanding of their properties and structure is essential for solving different problems of technological and industrial relevance; e.g. stabilization of foams, emulsions and thin films. These rely on the response of the interface to mechanical perturbations. The complex mechanical response appearing in particle-laden interfaces requires deepening on the understanding of physico-chemical mechanisms underlying the assembly of particles at interface which plays a central role in the distribution of particles at the interface, and in the complex interfacial dynamics appearing in these systems. Therefore, the study of particle-laden interfaces deserves attention to provide a comprehensive explanation on the complex relaxation mechanisms involved in the stabilization of fluid interfaces.
Collapse
Affiliation(s)
- Armando Maestro
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042, Grenoble, Cedex 9, France
| | - Eva Santini
- Istituto di Chimica della Materia Condensata e di Tecnologia per l'Energia (ICMATE), U.O.S. Genova-Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, 16149, Genova, Italy
| | - Eduardo Guzmán
- Departamento de Química Física I, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 1, 28040, Madrid, Spain.
| |
Collapse
|
17
|
Cagna A, Esposito G, Quinquis AS, Langevin D. On the reversibility of asphaltene adsorption at oil-water interfaces. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Maestro A, Zaccone A. Nonaffine deformation and tunable yielding of colloidal assemblies at the air-water interface. NANOSCALE 2017; 9:18343-18351. [PMID: 29143840 DOI: 10.1039/c7nr06014a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silica nanoparticles trapped at the air-water interface form a 2D solid state with amorphous order. We propose a theoretical model to describe how this solid-like state deforms under a shear strain ramp up to and beyond a yielding point which leads to plastic flow. The model accounts for all the particle-level and many-body physics of the system: nonaffine displacements, local connectivity and its evolution in terms of cage-breaking, and interparticle interactions mediated by the particle chemistry and colloidal forces. The model is able to reproduce experimental data with only two non-trivial fitting parameters: the relaxation time of the cage and the viscous relaxation time. The interparticle spring constant contains information about the strength of interparticle bonding which is tuned by the amount of surfactant that renders the particles hydrophobic and mutually attractive. This framework opens up the possibility of quantitatively tuning and rationally designing the mechanical response of colloidal assemblies at the air-water interface. Also, it provides a mechanistic explanation for the observed non-monotonic dependence of yield strain on surfactant concentration.
Collapse
Affiliation(s)
- Armando Maestro
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, UK.
| | | |
Collapse
|
19
|
Hooghten RV, Blair VE, Vananroye A, Schofield AB, Vermant J, Thijssen JHJ. Interfacial Rheology of Sterically Stabilized Colloids at Liquid Interfaces and Its Effect on the Stability of Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4107-4118. [PMID: 28414456 DOI: 10.1021/acs.langmuir.6b04365] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Particle-laden interfaces can be used to stabilize a variety of high-interface systems, from foams over emulsions to polymer blends. The relation between the particle interactions, the structure and rheology of the interface, and the stability of the system remains unclear. In the present work, we experimentally investigate how micron-sized, near-hard-sphere-like particles affect the mechanical properties of liquid interfaces. In particular, by comparing dried and undried samples, we investigate the effect of aggregation state on the properties of the particle-laden liquid interface and its relation to the stability of the corresponding Pickering emulsions. Partially aggregated suspensions give rise to a soft-solid-like response under shear, whereas for stable PMMA particulate layers a liquid-like behavior is observed. For interfacial creep-recovery measurements, we present an empirical method to correct for the combined effect of the subphase drag and the compliance of the double-wall ring geometry, which makes a significant contribution to the apparent elasticity of weak interfaces. We further demonstrate that both undried and dried PMMA particles can stabilize emulsions for months, dispelling the notion that particle aggregation, in bulk or at the interface, is required to create stable Pickering emulsions. Our results indicate that shear rheology is a sensitive probe of colloidal interactions but is not necessarily a predictor of the stability of interfaces, e.g., in quiescent Pickering emulsions, as in the latter the response to dilatational deformations can be of prime importance.
Collapse
Affiliation(s)
- Rob Van Hooghten
- Department of Chemical Engineering, KU Leuven , Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Victoria E Blair
- Department of Materials, ETH Zürich , Vladimir-Prelog-Weg 5, Zürich CH-8093, Switzerland
| | - Anja Vananroye
- Department of Chemical Engineering, KU Leuven , Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Andrew B Schofield
- SUPA School of Physics & Astronomy, The University of Edinburgh , Edinburgh EH9 3FD, United Kingdom
| | - Jan Vermant
- Department of Materials, ETH Zürich , Vladimir-Prelog-Weg 5, Zürich CH-8093, Switzerland
| | - Job H J Thijssen
- SUPA School of Physics & Astronomy, The University of Edinburgh , Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
20
|
Vishal B, Ghosh P. Foaming in aqueous solutions of hexadecyltrimethylammonium bromide and silica nanoparticles: Measurement and analysis of rheological and interfacial properties. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2017.1295867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Badri Vishal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Pallab Ghosh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
21
|
Maestro A, Deshmukh OS, Mugele F, Langevin D. Interfacial Assembly of Surfactant-Decorated Nanoparticles: On the Rheological Description of a Colloidal 2D Glass. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6289-6297. [PMID: 25973738 DOI: 10.1021/acs.langmuir.5b00632] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We address the rheology of assemblies of surfactant-decorated silica nanoparticles irreversibly adsorbed at the gas/liquid interface. Positively charged surfactant molecules (such as CTAB) bind to silica nanoparticle surfaces, and the resulting particle-surfactant complexes adsorb at gas/liquid interfaces. The surfactant molecules control the wettability of such decorated nanoparticles and their adsorption. The interparticle forces can be tuned by changing the surfactant concentration Cs. Increasing Cs, in addition to a decrease of the particles wettability, leads to an increase of the area fraction of particles at the interface. Oscillatory shear measurements (strain- and frequency-sweep) have been performed. Here, we explore the effect of the surfactant concentration Cs. At high enough Cs, the interface is highly packed, and an overall solidlike response is observed, with 2D glass properties.
Collapse
Affiliation(s)
- Armando Maestro
- †Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Omkar S Deshmukh
- ‡Physics of Complex Fluids, Department of Science and Technology, University of Twente, PO Box 217, Enschede, The Netherlands
| | - Frieder Mugele
- ‡Physics of Complex Fluids, Department of Science and Technology, University of Twente, PO Box 217, Enschede, The Netherlands
| | - Dominique Langevin
- §Laboratoire de Physique des Solides, CNRS UMR 8502, Bat. 510, Universite Paris-Sud XI, 91405 Orsay, France
| |
Collapse
|
22
|
|
23
|
Pinaud F, Geisel K, Massé P, Catargi B, Isa L, Richtering W, Ravaine V, Schmitt V. Adsorption of microgels at an oil-water interface: correlation between packing and 2D elasticity. SOFT MATTER 2014; 10:6963-6974. [PMID: 24825608 DOI: 10.1039/c4sm00562g] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aim of this paper is to determine how microgels adsorb at a model oil-water interface and how they adapt their conformation to compression, which gives rise to surface elasticity depending on the microgel packing. The structure of the film is determined by the Langmuir films approach (forced compression) and compared to spontaneous adsorption using the pendant drop method. The behaviour of microgels differs significantly from that of non-deformable particles but resembles that of linear polymers or proteins. We also correlate the properties of microgels spontaneously adsorbed at model interfaces to their forced adsorption during emulsification. Finally we propose a route to easily control a posteriori the microgel packing at the surface of droplets and the flow properties of emulsions stabilised by the microgels.
Collapse
Affiliation(s)
- Florent Pinaud
- Université de Bordeaux, Institut des Sciences Moléculaires, ENSCBP, 16 Av. Pey Berland, 33607 Pessac Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Langevin D. Surface shear rheology of monolayers at the surface of water. Adv Colloid Interface Sci 2014; 207:121-30. [PMID: 24321860 DOI: 10.1016/j.cis.2013.10.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 11/18/2022]
Abstract
The knowledge of surface shear rheology is important to understand and model flow in systems where interfaces are present: multiphase flow, wetting, foaming and others. The topic has been investigated for more than 100 years, but the knowledge accumulated is still partial. The experimental devices used for the measurement of the viscoelastic parameters are delicate to operate and the response of the monolayers is complex, usually non-linear and time dependent. Furthermore, it is difficult to decouple from the response of the bulk liquid. Important discrepancies between microscopic and macroscopic methods were reported and remain to be clarified. The knowledge of shear properties does not suffice in general to achieve proper descriptions of the flow behavior and measurements of compression properties are needed as well. This paper presents examples taken from the literature and discusses the current level of understanding.
Collapse
Affiliation(s)
- D Langevin
- Laboratoire de Physique des Solides, Université Paris Sud 11, Bâtiment 510, 91405 Orsay, France
| |
Collapse
|
25
|
Bhattacharya R, Basu J. Microscopic dynamics of nanoparticle monolayers at air–water interface. J Colloid Interface Sci 2013; 396:69-74. [DOI: 10.1016/j.jcis.2013.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/01/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
|
26
|
Golemanov K, Tcholakova S, Denkov N, Pelan E, Stoyanov SD. Surface shear rheology of saponin adsorption layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12071-84. [PMID: 22830458 DOI: 10.1021/la302150j] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Saponins are a wide class of natural surfactants, with molecules containing a rigid hydrophobic group (triterpenoid or steroid), connected via glycoside bonds to hydrophilic oligosaccharide chains. These surfactants are very good foam stabiliziers and emulsifiers, and show a range of nontrivial biological activities. The molecular mechanisms behind these unusual properties are unknown, and, therefore, the saponins have attracted significant research interest in recent years. In our previous study (Stanimirova et al. Langmuir 2011, 27, 12486-12498), we showed that the triterpenoid saponins extracted from Quillaja saponaria plant (Quillaja saponins) formed adsorption layers with unusually high surface dilatational elasticity, 280 ± 30 mN/m. In this Article, we study the shear rheological properties of the adsorption layers of Quillaja saponins. In addition, we study the surface shear rheological properties of Yucca saponins, which are of steroid type. The experimental results show that the adsorption layers of Yucca saponins exhibit purely viscous rheological response, even at the lowest shear stress applied, whereas the adsorption layers of Quillaja saponins behave like a viscoelastic two-dimensional body. For Quillaja saponins, a single master curve describes the data for the viscoelastic creep compliance versus deformation time, up to a certain critical value of the applied shear stress. Above this value, the layer compliance increases, and the adsorption layers eventually transform into viscous ones. The experimental creep-recovery curves for the viscoelastic layers are fitted very well by compound Voigt rheological model. The obtained results are discussed from the viewpoint of the layer structure and the possible molecular mechanisms, governing the rheological response of the saponin adsorption layers.
Collapse
Affiliation(s)
- Konstantin Golemanov
- Department of Chemical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
27
|
Garbin V, Crocker JC, Stebe KJ. Forced desorption of nanoparticles from an oil-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1663-1667. [PMID: 21932845 DOI: 10.1021/la202954c] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
While nanoparticle adsorption to fluid interfaces has been studied from a fundamental standpoint and exploited in application, the reverse process, that is, desorption and disassembly, remains relatively unexplored. Here we demonstrate the forced desorption of gold nanoparticles capped with amphiphilic ligands from an oil-water interface. A monolayer of nanoparticles is allowed to spontaneously form by adsorption from an aqueous suspension onto a drop of oil and is subsequently compressed by decreasing the drop volume. The surface pressure is monitored by pendant drop tensiometry throughout the process. Upon compression, the nanoparticles are mechanically forced out of the interface into the aqueous phase. An optical method is developed to measure the nanoparticle area density in situ. We show that desorption occurs at a coverage that corresponds to close packing of the ligand-capped particles, suggesting that ligand-induced repulsion plays a crucial role in this process.
Collapse
Affiliation(s)
- Valeria Garbin
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, Pennsylvania 19104-6393, United States
| | | | | |
Collapse
|
28
|
Hess A, Aksel N. Yielding and structural relaxation in soft materials: evaluation of strain-rate frequency superposition data by the stress decomposition method. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:051502. [PMID: 22181417 DOI: 10.1103/physreve.84.051502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/21/2011] [Indexed: 05/31/2023]
Abstract
Rheological properties of soft materials are often investigated in oscillatory shear and characterized by the storage and loss modulus, G' and G'', respectively. Unfortunately, the relaxation dynamics of most soft materials is too slow to be directly probed by commercial rheometers. Recently, it was shown by Wyss et al. [Phys. Rev. Lett. 98, 238303 (2007)] that the application of an oscillating strain-rate drives such soft materials and shifts the structural relaxation to higher times. They called this experimental technique strain-rate frequency superposition (SRFS). The great benefit of SRFS is the extremely extended frequency range. As viscoelastic measures, Wyss et al. proposed the familiar storage and loss modulus. Using these moduli results in a serious drawback: When the material yields, nonlinearities appear and the physical interpretation of the storage and loss modulus breaks down. Thus, SRFS as proposed by Wyss et al. is limited to the linear regime and the benefit of the extended frequency regime vanishes. In the present work, we validate an alternative data analysis technique, recently established as the stress decomposition method [K. S. Cho et al., J. Rheol. 49, 747 (2005); R. H. Ewoldt et al., J. Rheol. 52, 1427 (2008)], for combination with SRFS. Use of the stress decomposition method provides a physical interpretation of linear and nonlinear SRFS data in terms of strain stiffening and softening as well as shear thickening and thinning.
Collapse
Affiliation(s)
- Andreas Hess
- Department of Applied Mechanics and Fluid Dynamics, University of Bayreuth, Bayreuth, Germany.
| | | |
Collapse
|
29
|
Zang D, Rio E, Delon G, Langevin D, Wei B, Binks B. Influence of the contact angle of silica nanoparticles at the air–water interface on the mechanical properties of the layers composed of these particles. Mol Phys 2011. [DOI: 10.1080/00268976.2010.542778] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Shear rheology of lipid monolayers and insights on membrane fluidity. Proc Natl Acad Sci U S A 2011; 108:6008-13. [PMID: 21444777 DOI: 10.1073/pnas.1018572108] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The concept of membrane fluidity usually refers to a high molecular mobility inside the lipid bilayer which enables lateral diffusion of embedded proteins. Fluids have the ability to flow under an applied shear stress whereas solids resist shear deformations. Biological membranes require both properties for their function: high lateral fluidity and structural rigidity. Consequently, an adequate account must include, in addition to viscosity, the possibility for a nonzero shear modulus. This knowledge is still lacking as measurements of membrane shear properties have remained incomplete so far. In the present contribution we report a surface shear rheology study of different lipid monolayers that model distinct biologically relevant situations. The results evidence a large variety of mechanical behavior under lateral shear flow.
Collapse
|
31
|
Langevin D, Monroy F. Interfacial rheology of polyelectrolytes and polymer monolayers at the air–water interface. Curr Opin Colloid Interface Sci 2010. [DOI: 10.1016/j.cocis.2010.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Zang DY, Rio E, Langevin D, Wei B, Binks BP. Viscoelastic properties of silica nanoparticle monolayers at the air-water interface. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 31:125-134. [PMID: 20151313 DOI: 10.1140/epje/i2010-10565-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 12/04/2009] [Indexed: 05/28/2023]
Abstract
We have investigated the rheological behaviour of silica nanoparticle layers at the air-water interface. Both compressed and deposited layers have been studied in Langmuir troughs and with a bicone rheometer. The compressed layers are more homogeneous and rigid, and the elastic response to continuous, step and oscillatory compression are similar, provided the compression is fast enough and relaxation is prevented. The deposited layers are less rigid and more viscoelastic. Their shear moduli deduced from the oscillatory uniaxial compression are much smaller than those deduced from pure shear deformation suggesting that the effective shear rate is smaller than expected in the compression measurements.
Collapse
Affiliation(s)
- D Y Zang
- Laboratoire de Physique des Solides, Université Paris-Sud, UMR CNRS 8502, Bâtiment 510, 91405, Orsay cedex, France
| | | | | | | | | |
Collapse
|