• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4699713)   Today's Articles (2956)
For: Zhang Z, Qi Y, Zhou S, Gao S, Guan J. Explicit determination of mean first-passage time for random walks on deterministic uniform recursive trees. Phys Rev E Stat Nonlin Soft Matter Phys 2010;81:016114. [PMID: 20365439 DOI: 10.1103/physreve.81.016114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 11/09/2009] [Indexed: 05/29/2023]
Number Cited by Other Article(s)
1
Chun HM, Hwang S, Kahng B, Rieger H, Noh JD. Heterogeneous Mean First-Passage Time Scaling in Fractal Media. PHYSICAL REVIEW LETTERS 2023;131:227101. [PMID: 38101364 DOI: 10.1103/physrevlett.131.227101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/03/2023] [Indexed: 12/17/2023]
2
Ma F, Luo X, Wang P. Stochastic growth tree networks with an identical fractal dimension: Construction and mean hitting time for random walks. CHAOS (WOODBURY, N.Y.) 2022;32:063123. [PMID: 35778122 DOI: 10.1063/5.0093795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
3
Ma F, Wang P. Mean first-passage time for random walks on random growth tree networks. Phys Rev E 2022;105:014307. [PMID: 35193265 DOI: 10.1103/physreve.105.014307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
4
Peng J, Agliari E. Exact results for the first-passage properties in a class of fractal networks. CHAOS (WOODBURY, N.Y.) 2019;29:023105. [PMID: 30823739 DOI: 10.1063/1.5080481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
5
Liu JB, Cao J, Alofi A, AL-Mazrooei A, Elaiw A. Applications of Laplacian spectra for n-prism networks. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.06.109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
6
Zhang Z, Li H, Yi Y. Anomalous behavior of trapping in extended dendrimers with a perfect trap. J Chem Phys 2015;143:064901. [PMID: 26277160 DOI: 10.1063/1.4927473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
7
Peng J, Agliari E, Zhang Z. Exact calculations of first-passage properties on the pseudofractal scale-free web. CHAOS (WOODBURY, N.Y.) 2015;25:073118. [PMID: 26232969 DOI: 10.1063/1.4927085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
8
Peng J, Xu G. Efficiency analysis of diffusion on T-fractals in the sense of random walks. J Chem Phys 2014;140:134102. [DOI: 10.1063/1.4869799] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
9
Dai M, Li X, Xi L. Random walks on non-homogenous weighted Koch networks. CHAOS (WOODBURY, N.Y.) 2013;23:033106. [PMID: 24089942 DOI: 10.1063/1.4810927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
10
Lin Y, Zhang Z. Random walks in weighted networks with a perfect trap: an application of Laplacian spectra. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013;87:062140. [PMID: 23848660 DOI: 10.1103/physreve.87.062140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Indexed: 06/02/2023]
11
Lin Y, Zhang Z. Influence of trap location on the efficiency of trapping in dendrimers and regular hyperbranched polymers. J Chem Phys 2013;138:094905. [DOI: 10.1063/1.4793309] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
12
Zhang Z, Gao S, Xie W. Impact of degree heterogeneity on the behavior of trapping in Koch networks. CHAOS (WOODBURY, N.Y.) 2010;20:043112. [PMID: 21198082 PMCID: PMC7117061 DOI: 10.1063/1.3493406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/02/2010] [Indexed: 05/30/2023]
13
Hwang S, Yun CK, Lee DS, Kahng B, Kim D. Spectral dimensions of hierarchical scale-free networks with weighted shortcuts. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010;82:056110. [PMID: 21230548 DOI: 10.1103/physreve.82.056110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/07/2010] [Indexed: 05/30/2023]
14
Lin Y, Wu B, Zhang Z. Determining mean first-passage time on a class of treelike regular fractals. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010;82:031140. [PMID: 21230058 DOI: 10.1103/physreve.82.031140] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/11/2010] [Indexed: 05/30/2023]
15
Comellas F, Miralles A. Mean first-passage time for random walks on generalized deterministic recursive trees. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010;81:061103. [PMID: 20866374 DOI: 10.1103/physreve.81.061103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Indexed: 05/29/2023]
16
Zhang Z, Wu B, Zhang H, Zhou S, Guan J, Wang Z. Determining global mean-first-passage time of random walks on Vicsek fractals using eigenvalues of Laplacian matrices. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010;81:031118. [PMID: 20365708 DOI: 10.1103/physreve.81.031118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Indexed: 05/29/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA