Abstract
We present an analysis of the mean-field kinetics of Brownian coagulation of droplets and polymers driven by input of monomers which aims to characterize the long time behavior of the cluster size distribution as a function of the inverse fractal dimension, a, of the aggregates. We find that two types of long time behavior are possible. For 0≤a<1/2 the size distribution reaches a stationary state with a power law distribution of cluster sizes having exponent 3/2. The amplitude of this stationary state is determined exactly as a function of a. For 1/2<a≤1, the cluster size distribution never reaches a stationary state. Instead a bimodal distribution is formed in which a narrow population of small clusters near the monomer scale is separated by a gap (where the cluster size distribution is effectively zero) from a population of large clusters which continue to grow for all time by absorbing small clusters. The marginal case, a=1/2, is difficult to analyze definitively, but we argue that the cluster size distribution becomes stationary and there is a logarithmic correction to the algebraic tail.
Collapse