Jin T, Yu J, Zhang N, Zhao H. Scattering of lattice solitons and decay of heat-current correlation in the Fermi-Pasta-Ulam-α-β model.
Phys Rev E 2017;
96:022116. [PMID:
28950578 DOI:
10.1103/physreve.96.022116]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 11/07/2022]
Abstract
As is well known, solitons can be excited in nonlinear lattice systems; however, whether, and if so, how, this kind of nonlinear excitation can affect the energy transport behavior is not yet fully understood. Here we study both the scattering dynamics of solitons and heat transport properties in the Fermi-Pasta-Ulam-α-β model with an asymmetric interparticle interaction. By varying the asymmetry degree of the interaction (characterized by α), we find that (i) for each α there exists a momentum threshold for exciting solitons from which one may infer an α-dependent feature of probability of presentation of solitons at a finite-temperature equilibrium state and (ii) the scattering rate of solitons is sensitively dependent on α. Based on these findings, we conjecture that the scattering between solitons will cause the nonmonotonic α-dependent feature of heat conduction. Fortunately, such a conjecture is indeed verified by our detailed examination of the time decay behavior of the heat current correlation function, but it is only valid for an early time stage. Thus, this result may suggest that solitons can have only a relatively short survival time when exposed in a thermal environment, eventually affecting the heat transport in a short time.
Collapse