1
|
Otsuki M, Hayakawa H. Softening and Residual Loss Modulus of Jammed Grains under Oscillatory Shear in an Absorbing State. PHYSICAL REVIEW LETTERS 2022; 128:208002. [PMID: 35657892 DOI: 10.1103/physrevlett.128.208002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/26/2021] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
From a theoretical study of the mechanical response of jammed materials comprising frictionless and overdamped particles under oscillatory shear, we find that the material becomes soft, and the loss modulus remains nonzero even in an absorbing state where any irreversible plastic deformation does not exist. The trajectories of the particles in this region exhibit hysteresis loops. We succeed in clarifying the origin of the softening of the material and the residual loss modulus with the aid of Fourier analysis. We also clarify the roles of the yielding point in the softening to distinguish the plastic deformation from reversible deformation in the absorbing state.
Collapse
Affiliation(s)
- Michio Otsuki
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Gupta D, Busiello DM. Tighter thermodynamic bound on the speed limit in systems with unidirectional transitions. Phys Rev E 2021; 102:062121. [PMID: 33465998 DOI: 10.1103/physreve.102.062121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/19/2020] [Indexed: 11/07/2022]
Abstract
We consider a general discrete state-space system with both unidirectional and bidirectional links. In contrast to bidirectional links, there is no reverse transition along the unidirectional links. Herein, we first compute the statistical length and the thermodynamic cost function for transitions in the probability space, highlighting contributions from total, environmental, and resetting (unidirectional) entropy production. Then we derive the thermodynamic bound on the speed limit to connect two distributions separated by a finite time, showing the effect of the presence of unidirectional transitions. Uncertainty relationships can be found for the temporal first and second moments of the average resetting entropy production. We derive simple expressions in the limit of slow unidirectional transition rates. Finally, we present a refinement of the thermodynamic bound by means of an optimization procedure. We numerically investigate these results on systems that stochastically reset with constant and periodic resetting rate.
Collapse
Affiliation(s)
- Deepak Gupta
- Dipartimento di Fisica "G. Galilei," INFN, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Daniel M Busiello
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Physics Laboratory of Statistical Biophysics, 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Tsuruyama T. Entropy in Cell Biology: Information Thermodynamics of a Binary Code and Szilard Engine Chain Model of Signal Transduction. ENTROPY 2018; 20:e20080617. [PMID: 33265706 PMCID: PMC7513144 DOI: 10.3390/e20080617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022]
Abstract
A model of signal transduction from the perspective of informational thermodynamics has been reported in recent studies, and several important achievements have been obtained. The first achievement is that signal transduction can be modelled as a binary code system, in which two forms of signalling molecules are utilised in individual steps. The second is that the average entropy production rate is consistent during the signal transduction cascade when the signal event number is maximised in the model. The third is that a Szilard engine can be a single-step model in the signal transduction. This article reviews these achievements and further introduces a new chain of Szilard engines as a biological reaction cascade (BRC) model. In conclusion, the presented model provides a way of computing the channel capacity of a BRC.
Collapse
Affiliation(s)
- Tatsuaki Tsuruyama
- Department of Discovery Medicine, Pathology Division, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8315, Japan
| |
Collapse
|
4
|
|
5
|
Petersen CF, Evans DJ, Williams SR. Mechanism for asymmetric bias in demonstrations of the NPI and fluctuation theorem. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1068940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Suzuki K, Hayakawa H. Divergence of Viscosity in Jammed Granular Materials: A Theoretical Approach. PHYSICAL REVIEW LETTERS 2015; 115:098001. [PMID: 26371683 DOI: 10.1103/physrevlett.115.098001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 06/05/2023]
Abstract
A theory for jammed granular materials is developed with the aid of a nonequilibrium steady-state distribution function. The approximate nonequilibrium steady-state distribution function is explicitly given in the weak dissipation regime by means of the relaxation time. The theory quantitatively agrees with the results of the molecular dynamics simulation on the critical behavior of the viscosity below the jamming point without introducing any fitting parameter.
Collapse
Affiliation(s)
- Koshiro Suzuki
- Analysis Technology Development Center, Canon Inc., 30-2 Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Takada S, Saitoh K, Hayakawa H. Simulation of cohesive fine powders under a plane shear. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062207. [PMID: 25615085 DOI: 10.1103/physreve.90.062207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Indexed: 06/04/2023]
Abstract
Three-dimensional molecular-dynamics simulations of cohesive dissipative powders under a plane shear are performed. We find the various phases depending on the dimensionless shear rate and the dissipation rate as well as the density. We also find that the shape of clusters depends on the initial condition of velocities of particles when the dissipation is large. Our simple stochastic model reproduces the non-Gaussian velocity distribution function appearing in the coexistence phase of a gas and a plate.
Collapse
Affiliation(s)
- Satoshi Takada
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kuniyasu Saitoh
- Faculty of Engineering Technology, MESA+, University of Twente, 7500 AE Enschede, The Netherlands
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Matsumoto T, Otsuki M, Takeshi O, Goto S, Nakahara A. Response function of turbulence computed via fluctuation-response relation of a Langevin system with vanishing noise. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:061002. [PMID: 25019714 DOI: 10.1103/physreve.89.061002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Indexed: 06/03/2023]
Abstract
For a shell model of the fully developed turbulence and the incompressible Navier-Stokes equations in the Fourier space, when a Gaussian white noise is artificially added to the equation of each mode, an expression of the mean linear response function in terms of the velocity correlation functions is derived by applying the method developed for nonequilibrium Langevin systems [Harada and Sasa, Phys. Rev. Lett. 95, 130602 (2005)]. We verify numerically for the shell-model case that the derived expression of the response function, as the noise tends to zero, converges to the response function of the noiseless shell model.
Collapse
Affiliation(s)
- Takeshi Matsumoto
- Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Michio Otsuki
- Department of Materials Science, Shimane University, Matsue 690-8504, Japan
| | - Ooshida Takeshi
- Department of Mechanical and Aerospace Engineering, Tottori University, Tottori 680-8552, Japan
| | - Susumu Goto
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Akio Nakahara
- Laboratory of Physics, College of Science and Technology, Nihon University, Funabashi 274-8501, Japan
| |
Collapse
|
9
|
Murakami R, Hayakawa H. Effect of elastic vibrations on normal head-on collisions of isothermal spheres. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012205. [PMID: 24580220 DOI: 10.1103/physreve.89.012205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Indexed: 06/03/2023]
Abstract
We numerically investigate head-on collisions of isothermal viscoelastic spheres. We find that the restitution coefficient oscillates against the impact speed if the solid viscosity inside the sphere is small enough. We confirm that the oscillation arises from the resonance between the duration of contact and the eigenfrequencies of the sphere. This oscillation disappears if there exists the strong solid viscosity in spheres. We also find that a sinusoidal behavior of the restitution coefficient against the initial phase in the eigenmodes for collisions between a thermally activated sphere and a flat wall. As a result, the restitution coefficient can exceed unity if the impact speed of the colliding sphere is nearly equal to or slower than the thermal speed. We have confirmed the existence of the fluctuation theorem for impact processes through our simulation.
Collapse
Affiliation(s)
- Ryo Murakami
- Yukawa Institute for Theoretical Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Hayakawa H, Otsuki M. Nonequilibrium identities and response theory for dissipative particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:032117. [PMID: 24125223 DOI: 10.1103/physreve.88.032117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Indexed: 06/02/2023]
Abstract
We derive some nonequilibrium identities such as the integral fluctuation theorem and the Jarzynski equality starting from a nonequilibrium state for dissipative classical systems. Thanks to the existence of the integral fluctuation theorem we can naturally introduce an entropy-like quantity for dissipative classical systems in far from equilibrium states. We also derive the generalized Green-Kubo formula as a nonlinear response theory for a steady dynamics around a nonequilibrium state. We numerically verify the validity of the derived formulas for sheared frictionless granular particles.
Collapse
Affiliation(s)
- Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
11
|
Nickelsen D, Engel A. Probing small-scale intermittency with a fluctuation theorem. PHYSICAL REVIEW LETTERS 2013; 110:214501. [PMID: 23745881 DOI: 10.1103/physrevlett.110.214501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Indexed: 06/02/2023]
Abstract
We characterize statistical properties of the flow field in developed turbulence using concepts from stochastic thermodynamics. On the basis of data from a free air-jet experiment, we demonstrate how the dynamic fluctuations induced by small-scale intermittency generate analogs of entropy-consuming trajectories with sufficient weight to make fluctuation theorems observable at the macroscopic scale. We propose an integral fluctuation theorem for the entropy production associated with the stochastic evolution of velocity increments along the eddy hierarchy and demonstrate its extreme sensitivity to the accurate description of the tails of the velocity distributions.
Collapse
Affiliation(s)
- Daniel Nickelsen
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| | | |
Collapse
|
12
|
Seifert U. Stochastic thermodynamics, fluctuation theorems and molecular machines. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:126001. [PMID: 23168354 DOI: 10.1088/0034-4885/75/12/126001] [Citation(s) in RCA: 1280] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation-dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.
Collapse
Affiliation(s)
- Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
13
|
Ben-Avraham D, Dorosz S, Pleimling M. Entropy production in nonequilibrium steady states: a different approach and an exactly solvable canonical model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:011115. [PMID: 21867121 DOI: 10.1103/physreve.84.011115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Indexed: 05/31/2023]
Abstract
We discuss entropy production in nonequilibrium steady states by focusing on paths obtained by sampling at regular (small) intervals, instead of sampling on each change of the system's state. This allows us to directly study entropy production in systems with microscopic irreversibility. The two sampling methods are equivalent otherwise, and the fluctuation theorem also holds for the different paths. We focus on a fully irreversible three-state loop, as a canonical model of microscopic irreversibility, finding its entropy distribution, rate of entropy production, and large deviation function in closed analytical form, and showing that the observed kink in the large deviation function arises solely from microscopic irreversibility.
Collapse
Affiliation(s)
- Daniel Ben-Avraham
- Department of Physics, Clarkson University, Potsdam, New York 13699-5820, USA
| | | | | |
Collapse
|